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ABSTRACT 

 

 

Kulkarni, Ruturaj Jayant. M.S.M.E., Purdue University, August 2012. A. I. – based 
Modeling and Optimization of Turning Process.  Major Professor: Hazim El-Mounayri. 
 

 

 In this thesis, Artificial Neural Network (ANN) technique is used to model and 

simulate the Turning Process. Significant machining parameters (i.e. spindle speed, feed 

rate, and, depths of cut) and process parameters (surface roughness and cutting forces) 

are considered. It is shown that Multi-Layer Back Propagation Neural Network is capable 

to perform this particular task. Design of Experiments approach is used for efficient 

selection of values of parameters used during experiments to reduce cost and time for 

experiments. The Particle Swarm Optimization methodology is used for constrained 

optimization of machining parameters to minimize surface roughness as well as cutting 

forces. ANN and Particle Swarm Optimization, two computational intelligence 

techniques when combined together, provide efficient computational strategy for finding 

optimum solutions. The proposed method is capable of handling multiple parameter 

optimization problems for processes that have non-linear relationship between input and 

output parameters e.g. milling, drilling etc. In addition, this methodology provides 

reliable, fast and efficient tool that can provide suitable solution to many problems faced 

by manufacturing industry today.
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1.  INTRODUCTION 

 

 

 Metal forming can be described as a process of working with metals, to create 

parts, their assemblies, and their structures. It constitutes a wide range of manufacturing 

processes. About 70% of the metals forming processes are represented by metal cutting 

which is also a form of subtractive manufacturing. During these procedures, power driven 

machine tools are utilized to remove the material from the existing geometry or shape to 

the desired shapes. Cutting processes are divided into several operations which mainly 

include drilling, milling, grinding, and turning. Considering its applicability and 

versatility, there should be no doubt that turning is among the most important processes. 

The following processes can be carried out successfully on the turning machine: 

Chamfering, a cutting angle on the on the corner of the workpiece for easier mating of the 

parts; parting, cutting the end of the part by giving radial feed to the tool; threading, to 

produce either external or internal threads; boring, a single point tool given a linear feed 

along the axis of rotation. The primary applications would include machine components, 

shafts, engine components such as pistons, cylinders, pulleys, axles, etc. 
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1.1 The Turning Operation 

 Turning is a material removal process, a subtractive form of machining which is 

used to create parts of circular or rotational form of desired geometry/shape by removing 

unwanted material.  The essential elements of the turning process are machine or lathe, 

workpiece material which is a piece of a pre-shaped part, the fixture to which the material 

is attached. The fixture is secured to the turning machine and is then allowed to rotate for 

a wide range of speeds. The other end of the workpiece is hooked up with the tail stock to 

allow perfect rotation and avoid eccentric rotations. The conceptual representation of a 

turning machine is depicted in Figure 1.1.  

 

Figure 1.1 Representation of lathe machine 

 

  The cutter in the turning operation is usually a single-point cutting tool, except for 

a few exceptions where multi-point tools are used.  The tool is secured to the tool post 

which is then attached to the machine.  During the operation, the cutting tool is fed into 

the rotating work piece with lateral motion along with the axis of rotation. The unwanted 
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material is removed in the form of chips until the desired shape is attained. Figure 2 

shows the cutting process in the turning operation. 

 

Figure 1.2 Cutting process in turning operation. 

 

 Turning is usually opted as a secondary process; it is chosen in order to improve 

and refine the characteristics and features on parts made by using other processes. 

Turning is used to produce rotational, typically axi-symmetric, parts that have many 

features, such as holes, grooves, threads, tapers, various diameter steps, and even 

contoured surfaces. Parts completely made only on a turning machine are used as 

prototypes or parts with limited quantity, e.g. designed shafts and fasteners. The turning 

process offers very high tolerance and good surface roughness; hence, using it for 

improvements in the already existing part is recommended. 

 

The accuracy of any process depends on involvement of operational variables. 

The operating parameters that contribute to the turning process are cutting feed (linear 

distance covered by the tool during one revolution of the workpiece), cutting speed 

(Speed of the workpiece surface relative to the edge of the cutting tool during a cut), 

spindle speed (the workpiece’s revolution speed per minute), feed rate (linear velocity of 

the cutting tool with respect to the workpiece), depth of cut (depth of the tool tip with 

respect to the surface of the workpiece). Vibrations, tool wear, tool life, surface finish, 

and cutting forces, etc. are also in direct relation with values selected for process 

parameters. Hence, to improve the efficiency of the process and the quality of the product, 

it is necessary to control the process parameters.  
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 So far in the industry the trend was such that the selection of the cutting 

parameters was carried out using previous records or experience. This may not be the 

most convenient way for the process to work efficiently as it may result in system failure, 

i.e. loss of tool life or insufficient surface roughness, which will add to the cost of 

production. Most researchers have shown a limited level of accuracy using either 

analytical or semi-empirical approaches. Even after considering the complicated nature of 

the process, researchers have been using a new technique, Artificial Neural Network 

(ANN) for simulation. In a short time this technique became the favorite since it offers 

simplicity, accuracy, and robustness.  

 

 

1.2 Problem Statement  

 The turning process is one of the oldest and most used processes in the industry. It 

has a wide range of applications. It is a material removal process. Once the process is 

complete there is no way that things can be reverted. The surface roughness of 

manufactured product is outcome of the turning process parameters, and an important 

characteristics that define product quality, aesthetics etc. Manufactured parts are often 

rejected, because of failure to comply with the surface quality requirements. Sometimes, 

if possible, rework or finishing cut can manage to reduce surface roughness and make 

part acceptable. There is not just one, but many factors responsible for resulting surface 

roughness e.g. feed, speed, depth of cut, cutting forces, tool geometry etc.   

 

 As we know, the choice of cutting parameter values for turning process is mostly 

made on shop floor by the machinist from his previous experience or from material 

handbook.  However, there is still possibility that the estimated outcome would not occur, 

as not all the factors can be manually controlled. Therefore, we simulate a model using 

Artificial Neural Network technique which will predict the outcomes for selection of 

corresponding cutting parameters.  We are interested in finding out optimum values of 

these cutting parameters, so as to ensure the resultant surface roughness will be minimum. 

Another objective we want to achieve during this study is to keep the cutting force values 
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low while attaining the desired value of surface roughness for selected process 

parameters.  

 

 Surface roughness requirement is one of the important and necessary 

requirements that have to be satisfied for standards in the industry. Requirement for 

quality of surface roughness changes with the application for which the part is being used 

e.g. aeronautical engineering, food and medicine requires very high level of surface finish 

i.e about 0.8 to 1 micron, automotive industry needs good surface roughness even though 

not as high as aerospace industry i.e. anywhere below 1.5 micron, general application 

products that are not considered in any of the above industry does not requires surface 

roughness to be very high due to limitations of cost or functionality constraints.  
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2.  LITERATURE REVIEW 

 

 

2.1 Process Simulation Technique 

 

 

2.1.1 Mathematical Modeling Technique 

Forces acting on the machine tool frame during the material removal process 

cause static and dynamic distortion. The effort is made in order to understand process 

physics so as to choose a suitable design for tools, fixtures, and machining parameters 

[1].To investigate the dynamic characteristics such as cutting forces, displacements, 

acceleration, etc., simulations of machining processes are effectively used [5,6]. 

Simulation of the manufacturing process is of integrative type. If it has to include 

machine, tool and work piece, clamping and machining process as controlling factors. 

The list of things to predict includes component quality, which is surface roughness, the 

stability of the system, hence the cutting forces, and then the simulation is effective 

[10].Using simulations instead of actual experiments allows the researcher to test factors 

influencing the process, i.e. chatter, tool wear, and tool breakage, and to produce fairly 

accurate results at a fraction of the cost of actual experimentation. In addition, simulation 

allows the researcher to test extreme situations without any damage or failure [6]. Unless 

the models of the cutting process and the machine tool are accurate, simulations of 

machining will not be effective. It is time consuming and costly to use empirical cutting 

force models unless the cutting coefficients are already determined experimentally [2]. 

On the other hand, analytical models use plastic theory to describe the mechanics of the 

process with available information of cutting conditions and properties of materials [3]. 
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In the case of numerical simulations, nonlinear material behavior and contact conditions 

between the tool and the material is used for detailed study of chip formation [4].  

 

 

2.1.2 Computational Programming Technique 

Computer programming is also used to simulate the turning operation. The program takes 

into consideration the tool geometry simulation module and discrete transfer function 

representing the machining process as well as tool structure [5].Programs are made to run 

for different steps values of controlling factors to study if simulated results agree with 

real ones. Along with the computer programs, additional features can also be applied to 

improve the simulation and also to make it more useful. In article [7], research was 

carried out to improve the efficiency of the Computer Numerically Control (CNC) 

machining by allowing additional features of automatic feed rate selection. A 

combination of low cost noninvasive spindle motor power sensors with geometric and 

mechanistic cutting process models was made. Selection algorithm chooses the fastest 

possible feed rate from the feed rate selection planner, when the program is run for one 

tool move at one instant. Constraints such as surface roughness, tool health, etc., are set. 

The accuracy of force model coefficients dictates the accuracy of force prediction. To 

make the force model robust different types of cutting geometries are selected.  

 

If all the necessary boundary conditions are taken into consideration the 

mathematical equations of the model become so complex that finding the solution for that 

is not possible[10]. In an analytical approach, if work hardening or non-trivial geometry 

of the workpiece are to be incorporated, the theory of plasticity leads to a non-solvable 

set of equations [11]. 

 

 

2.1.3 FEM Technique 

In order to overcome the limitations of the analytical method and make the model 

more feasible, the Finite Element Method (FEM) model of orthogonal cutting is used [1]. 



8 
 

Results are best when frictional stress is calculated from normal stress acting on the tool. 

Use of FEM has been extended up to 2D- 3D FEM code and from the process to the chip 

formation point of view. Results of FEM simulation of process assist in tool design for 

manufacturers. It also takes considerable computational time [8]. In FEM 3D code for 

simulation of the cutting process, orthogonal as well as oblique cutting has been modeled 

[1, 8]. The thermo-elastic-plastic properties are incorporated in the FEA which results in 

a better friction model. Along with the friction model, friction coefficient determined by 

force calibration and sheer flow stresses characterizes the tool chip interaction. Results or 

predictions from FEA model are consistent as per sensitivity analysis. The friction model 

proposed in this approach is valid and tool chip interaction is the most dominant factor 

[9]. However, in FE based simulation models general deviation is noticed for predicted 

feed and thrust forces from actual experimental measurements [12, 13, 14, 15 and 16]. 

 

 

2.1.4 ANN Technique 

Considering the needs of a fast growing manufacturing industry, researchers came 

up with a new alternative to avoid deviation in prediction, a technique which operates far 

differently from traditional simulation techniques. This technique is Artificial Neural 

Network (ANN). It is a relatively new technology. It operates on  a philosophy similar to  

that of biological nervous systems. This technique became famous quickly and has been 

applied throughout the industry for real world problem solving. Artificial Neural Network 

(ANN) is computational modeling inspired by the neural architecture of the human brain. 

It is one of the most popular nonlinear mapping systems in A.I.  This technique is mainly 

used for two applications, classification and prediction. The neural network   determines 

the pattern between input and output data by training. It has multiple layers and has a 

parallel structure. It consists of an Input layer, hidden layers, and output layers.  Links 

between hidden layers and output layers consist of output weight matrix. The ability of 

neural networks to solve complex and nonlinear problems makes them more suitable for 

simulation of the manufacturing process. 
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Superior performance for simulation of the process using the neural network 

model has been reported. Several researchers (e.g.  Risbood and Dixit [17]; Davim and 

Gaitonde [19]; Bandit Sukswat [21]; Natarajan and Muthu [24];  Sharma and Dhiman 

[25]; Ezugwu and Fadare [26]; El-Mounayri and Deng[30] )  demonstrated the capability 

of the neural network algorithm to successfully evolve the implicit relationship between 

the process parameters and the set of output variables. In the last few years, there has 

been a lot of emphasis on using the Artificial Neural Network technique for simulations 

of manufacturing processes, describing the relationship between the process and the 

output parameters. Manufacturing processes are complex and hence, pose a challenge for 

true mathematical representation. Cutting forces acting on the tool and surface roughness 

are among the most commonly used output parameters by researchers, considering its 

importance for product quality, life, while Feed rate, spindle speed and depth of cut are 

most commonly used input parameters (e.g. Risbood and Dixit [17];Lin and Lee [18]; 

Davim and Gaitonde [19]; Bandit Sukswat [21]; Natarajan and Muthu [24];  Sharma and 

Dhiman [25]; Ezugwu and Fadare [26]). The ANN technique  is successful because it 

uses previous data and because of  its accuracy in prediction for most complex processes.  

 

While the ANN technique gained pace among researchers, there  was one more 

technique which also caught the eye of the researchers, the Regression based technique. 

Lin and Lee [18]; Nuez and Simao [20]; Chavoshi and Tajdari [22] have compared the 

feed forward multilayer neural network with regression based methods and concluded 

that the multilayer neural network is more useful for process simulation.Efficient chip 

form monitoring and control through Multi-layer Neural Network was achieved by 

Suksawat [21] in order to improve machining process reliability, surface quality, and 

productivity. Similarly Zang and Chen [23] used artificial neural network for In-process 

Surface Roughness Prediction (INNSRP) as well as In-process adaptive parameter 

control (INNAPC). This was used to predict the surface roughness of ongoing work and 

make the changes in feed as per required surface roughness. Taking the research to the 

next step, Ezugwu and Fadare [26]; Ozel and Karpat [29] also predicted the tool flank 

wear which extended the use of the neural network for prediction of tool life. El-
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Mounayri and Deng [30] used a novel approach by reverse mapping of the ANN model 

for cutting force estimation. Back propagation networks provide acceptable degree of 

accuracy, when it comes to simulating different manufacturing process. One of the 

reasons why BPNN is widely used is its ability to produce reasonable results when 

presented with inputs that were never seen during training [32].  

 

Multilayer BPNN is slow to converge because of the use of sigmoid nonlinear 

transformation function. Some researchers chose to use the /a Radial Basis Network 

because of its versatility, as it uses a/the Gaussian curve to map the values. It is fairly 

good with function approximation. It is very fast in convergence and easier to define 

terms of number of characteristic parameters. It is mainly used for pattern recognition. 

El-Mounayri and Briceno [27] used RBN as an alternative to simulate the manufacturing 

process.  Also, El-Mounayri and Briceno[28]  compared the performance of BPNN and 

RBN for similar processes and concluded that RBN is superior for that case. 

 

To summarize, the advantages of ANN compared with other 

traditional/nontraditional techniques: 

 Only experimental data is required in order to simulate the process, e.g. Input 

parameters, output parameters, etc. 

 Ability to capture dynamic characteristics of the process since data used for 

training is generated  from the actual process. 

 It is easier to simulate implicit relationship of complex processes considering its 

methodology is flexible. 

 It is easier to use and faster to apply for any manufacturing process. 

Hence in the present thesis, the  ANN tool is utilized for simulation of the turning 

process.  
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2.2 Optimization of Machining Parameters 

Considering the continuous growing need of the industry for manufacturing the 

products with good quality, long life, and agreeable aesthetic appearance, in order to keep 

up with the challenges there is no other option but to adapt to new trends in optimization. 

In process planning it is necessary to determine machining parameters that need to be 

optimized in order to satisfy the requirement which is most likely to  involve either one or  

more of the machining economics, machining quality, and machining safety. Many 

approaches from a wide array of available options have been used to optimize turning 

operations. Su and Chen [33] used a stochastic optimization method based on simulated 

annealing algorithm and pattern search for machining optimization of the turning process. 

Cutting time was the parameter of interest in this case. Surface roughness, or quality of 

product, is one of the favorite parameters for optimization. Tool life, manufacturing cost, 

being another parameter. For many researchers (e.g. Tzeng and Yang [34]; Palanikumar 

and Karunamoorthy [35]; Benardos and Vosniakos [36]; Zhang and Chen [38]; Dogwa 

[39]; Kirby and Zhang [41]) minimizing surface roughness is the task for the 

optimization. Tool life is also considered as a parameter to be optimized by studying the 

tool wear by researchers (e.g. Hascalik and Caydas [37]; Yang and Tarng [40]). During 

every optimization exercise there are some constraints which are mostly limitations of the 

process. So cutting speed, feed, depth of cut, which are cutting parameters, and also 

cutting temperature, material specifications, etc., will be constraints .  Only the lower and 

higher boundary for the values of their respective parameters  are allowable in order to 

maintain the productivity of the process. Tandon and Mounayri [32] used an evolutionary 

computation technique called Particle Swarm Optimization (PSO). PSO is a relatively 

new technique being used for optimization of non-linear functions [45, 46]. It resulted in 

machining time reductions up to 35%.  Karpat and Ozel also used the PSO technique to 

find optimum cutting parameters in order to maximize MRR and minimize surface 

roughness. 
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2.2.1 Cutting cost  

Cutting cost is defined as the cost incurred for cutting of the metal. Cutting cost is 

calculated for multi-pass roughening as well as single-pass finishing as those are the two 

categories which divide the turning process. Cutting cost ܥெ is expressed as.  

 

 ௠                                                                                                          (2.1)ݐெ = ݇௢ܥ

  ௠ is the cutting time which is expressed asݐ

 ௠௦                                                                                                 (2.2)ݐ  + ௠௥ݐ  = ௠ݐ

Cutting time for rough turning is  

  = ௠௥ݐ
గ	஽	௅	

ଵ଴଴଴	௏ೝ௙ೝ
* n                                                                                             (2.3) 

Cutting time for finished turning is 

 =௠௦ݐ
గ	஽	௅	

ଵ଴଴଴	௏ೞ௙ೞ
                                                                                      (2.4) 

 

Now cutting cost is calculated by equation (2.1) 

Whereas, 

݇௢ = Direct labor cost including overheads($/Min). 

௥ܸ ௥݂ = Cutting speed and feed during rough turning. 

௦ܸ ௦݂ = Cutting speed and feed during finished turning. 

n  =  Number of rough cuts, an integer. 

 

 

2.2.2 Tool Cost 

From Taylor’s tool life equation, life of the tool is predicted as: 

T =  
஼బ

௏೛௙೜ௗೝ
                                                                                         (2.5) 

The same tool is generally used for roughing and finishing but its wear is different 

in both  cases, just by inserting value of feed and speed these parameters can be 

calculated.. Tool replacement cost is calculated as: 

௧݇  =  ்ܥ
݉ݐ
ܶ

                                                                                          (2.6) 
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 .௠ = Cutting timeݐ

݇௧  = Cutting edge cost ( $/Edge). 

 

 

2.2.3 Material Removal Rate 

In a cutting process, material removal rate is a key characteristic as it is an 

important parameter to define the productivity of the process. It is dependent on different 

cutting parameters such as feed, speed, and depth of cut. It is limited by the maximum 

force bearing capacity of the tool as well as the surface finish of the machined part. It is 

advisable to have the material removal rate as high as possible. It is expressed as the 

mathematical equation: 

 

MRR = f * V * DOC                                                                                          (2.7) 

f   = Feed rate (mm/rev) 

V  = Cutting Speed (m/min) 

DOC  = Depth of Cut (mm) 

 

The optimization problem would be to maximize MRR [51]. This was used to 

find out optimum values of cutting parameters in order to find out maximum MRR.  

 

 

2.2.4 Surface Roughness 

However, not every parameter or outcome can be described analytically, in which 

cases the evolutionary Neural Network technique is used for predicting the output. It has 

been observed that actual surface roughness measured from experimental data does not 

match theoretical values calculated from existing analytical formulation. This is because 

of characteristics such as adhesion, ploughing and geometrical effects which cannot be 

easily modeled using analytical methods [51]. 
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Figure 2.1 Swarm Intelligence Neural Network System [51] 

 

Inputs provided to the neural network are feed, speed, and depth of cut while the 

output is surface roughness. A Neural network with sufficient accuracy integrated with 

multi-objective particle swarm optimizer will provide useful information to the user 

during selection of machining parameters.  Karpat and Ozel used this Swarm-intelligence 

Neural Network (SINNS) to minimize surface roughness [51]. Data collection dictates 

the degree of accuracy of the results [36]. One of the most effective methods in 

experimental planning is Design of Experiments (DoE). It is used by the researchers in 

order to conduct the fractional factorial experiments that collect statistically significant 

data with minimum possible repetitions. In order to understand the contribution of the 

process parameters and other factors affecting the resultant characteristic of interest by 

researchers, variance analysis is carried out using ANOVA. Besides finding the optimum 

cutting parameters this can be used to find out parameters affecting the process under 

scrutiny [40]. Researchers (e.g. Tzeng and Yang [34]; Hascalik and Caydas [37];  Dagwa 

[39] ; Yang and Tarng [40]) concluded that feed was the most dominant parameter, 

followed by speed, and then depth on the turning process.  

 

 

2.3 Design of Experiments 

Experiments are carried out in order to have better understanding of the process, 

effects of process parameters on the final outcome or on some phenomenon. In any case 
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many results can be drawn from a large extent depending on the manner in which the data 

is collected. For efficient and effective performance, a scientific approach towards 

planning is recommended. Design of Experiment results in systematic process planning, 

so that appropriate data is collected which is then analyzed by statistical methods so that 

a valid conclusion is obtained.  DoE is an objective approach for selecting and analyzing 

the data with possible experimental errors. This technique is capable of studying several 

process parameters in one trial which reduces the work load that would be done for each 

parameter at one time. The minimum number of trials required increases with the 

increase in factors under study.   

 

During the experiments conducted by Hascalik and Caydas [37] for optimizing 

the process parameters of the turning process, a 244% improvement in surface roughness 

was observed and about a 335% improvement for tool life was observed using the 

optimum parameters. Using the Taguchi DoE, optimum parameters were found out for 

the turning operation and accuracy of prediction for surface roughness was observed to 

be up to 96.44%, for experiments conducted by Dagwa [39]. Use of DOE was also 

extended up to drilling operations for improvement of surface roughness by Zhang and 

Chen [38] when satisfactory results were obtained. Yang and Tarng [40] discovered for 

their experimental set up and resultant surface roughness with optimum parameters was 

improved by 250% compared to that of the initial parameters.      
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3.  EXPERIMENTATION 

 

 

3.1 Experimental Set up 

 

 

3.1.1 Introduction 

The information is provided in this chapter is about experimental set up used for force 

acquisition. This setup is used for acquiring the cutting forces and the surface roughness 

generated during turning process of metal work piece for a wide range machining 

conditions. The cutting forces and surface roughness obtained after the experiments from 

this set up are used as resource to create simulation of turning process by using artificial 

neural network (ANN) technique. The acquired data is used for analysis of the process 

and to find out the cutting parameters which results in most efficient outcomes. It can 

also be used for further analytical purposes such as tool and material comparison, sensory 

input for adaptive process control etc. Before we proceed to describe the intricacies of the 

setup, a list of the various components used in this experimental are listed below. 
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Table 3.1 Turning force and surface roughness measurement experimental setup 
components 

 
Sr. 
No. 

Component Specifications 

1 3-Component Force Dynamometer:  Kistler Type 9257B 
2 Shielded Connecting Cable Kistler Type 1687B5 
3 Charge Amplifier Kistler Type 5010 
4 CB-68LP National Instruments 
5 Type SH6868 Shielded Cable Assembly National Instruments 
6 NI PCI-6036E National Instruments 
7 IBM PC, sufficient capacity or 100 % compatible 

for hardware interfacing. 
 

8 Matlab GUI MATLAB 
9 TR100 Surface Roughness tester  

 

 

 

 

Figure 3.1 Force acquisition experimental setup schematic 
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3.1.2 Part Descriptions 

 The experimental set up begins with one of the most important part,viz. the three-

component force dynamometer (Item 1, Table 1) by Kistler�, Type 9257B. This 

dynamometer is quartz based, and is used for measuring three orthogonal components of 

force as referred in articles [47, 48]. It has great rigidity, high natural frequency, and, 

high resolution. High resolution is preferred as it records very small dynamic changes.   

 

Figure 3.2 Kistler Type 9257B 

 

 The quartz based dynamometer operates as follows. The electrical signals are 

generated from the forces acting on quartz element. These generated signals are in 

proportion with the forces. The resulting displacements due to these forces are very small. 

Rigidity coefficients are Cx,Cy > 1 kN/�m and Cz > 2kN/�m. Therefore force 

components are measured without any major displacement. Sensitivity is 7.95 pC/N (pC 

= pico-Coulomb, a unit of electric charge, N = Newton, a unit of force) for X- and Y- 

axes and 3.74pC/N for Z- axis, which is very high. Between the base plate and the top 

plate four, three component force sensors are fitted with high pre-load. Each sensor has 

three pairs of quartz plates, two for responding to pressure in X and Y direction and one 

for responding pressure in Z direction. In order to allow the multicomponent 

measurements of forces and moments, the outputs of these four sensors are connected 

inside the dynamometer.  
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  The electric signals from dynamometer are sent to the charge amplifier. It is an 

electronic unit. It is used to convert a charge from piezoelectric transducer to low 

impedance output voltage, utilizing the high-gain voltage amplifier with negative 

capacitative feedback. It is necessary to shield the charge induced by the dynamometer 

due to its very small magnitude (few pC/Newton force).  The reason for using specialized 

cable i.e. Type SH6868 Shielded Cable Assembly is that, there is concern that it could be 

exposed to external electromagnetic interference.  

 

 

 

Figure 3.3 Kistler 5010 Amplifier 

 

 After an amplifier does its work, charge from the dynamometer is converted to 

voltage, which is in measurable data. For conversion from an analogue format to a digital 

format, National instruments CB-68LP connection block is used. It allows simple 

connection to NI acquisition cards through ribbon cable. This data is then stored for 

analytical purposes. 
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Figure 3.4 CB-68LP connection block for Analogue to digital conversion 

  

 From the CB-68LP connection block, a SH68-68 Shielded cable is attached to NI 
PCI-6036E. It is a multifunction data acquisition cart. NI PCI-6036E has two 16-bit 
analogue outputs; eight digital I/O lines; two 24-bit counters. This was chosen due to 
availability of resources.  

 

 

Figure 3.5 NI PCI-6036 multifunction data acquisition cart 
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Figure 3.6 Complete set up of force acquisition system 

 

 

3.1.3 Data Acquisition Concepts 

 Necessary characteristics of the process to acquire the data are described below 

[49]. 

- Sampling rate 

 It defines the number of samples per unit time acquired from continuous signal to 

make discrete signal.  In order to have properly digitized signal, sampling rate is required 

to be twice the rate of that of maximum frequency component of the signal as per Nyquist 

sampling theorem. Lower sampling rates may lead to incomplete recovery of information 

from the sampled signal. When this requirement is met problems such as aliasing are 

avoided.  

 

- Resolution 

Number of bits (binary) used for representation. This determines the accuracy /least count 

of acquisition. For example, 12-bit means 212 = 4096 parts of the range. This for a 10V 
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range the resolution is 0.0025V.This translates into an accuracy of 0.25 N when the 

scaling factor on the charge amplifier is set to 100 Newton/Volt (i.e. measuring forces in 

the range of +1000N) 

 

- Multiplexing 

  It is a method by which multiple analog message signals or digital data streams 

are combined into one signal using same ADC chip. In the experimental set up 3 force 

components are measured. Board however is capable of measuring sixteen such single 

ended channels.   

 

- Range 

 This dictates the maximum and the minimum values of the voltage level ADC can 

quantisize. However there is limit to which the hardware is exposed to the voltage (in this 

case +10V). Signal conditioning does allow to control the maximum voltage exposure. 

Scaling factor is used at the charged amplifier to avoid overstepping of the voltage signal 

at the acquisition card.  

 

- Over-voltage protection 

 This feature provides the protection to the experimental set up for unexpected 

outcomes such as tool breakage or too large cutting force due to excessive depth of cut or 

even collision of parts. The safety factor is deployed to safeguard the equipment in case 

of any accident.  

 

- Data Transfers 

Since a large amount of data is handled, this characteristic holds lot of importance. 

This technique facilitates data transfer without any problems. It includes Direct Memory 

Access (DMA), and programmed I/O.  
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3.1.4 MATLAB GUI Implementation 

MATLAB GUI (Guided User Interface) is tool from MATLAB. It is used as 

application software platform [50]. MATLAB GUI is chosen because of its availability. 

Also, since the hardware used during the experimental set up is from NI and 

compatibility of MATLAB GUI with NI hardware has been proved to be excellent. The 

rate at which the readings are taken is too high. In order to have ease of analysis, data 

from the three separate channels is stored and documented in the spreadsheet format. By 

doing this, the objective of acquiring and storage of the data in usable format is achieved.  

The technique used for data acquisition is Circular buffer. It is a data structure where 

single, fixed-size buffer is used to connect the ends. Buffering data streams is done easily 

in this structure.  

 

Once the program is stopped after pushing the stop button, a text file is created 

with name that was the respective experimental number designated at the start of 

experiment. Acquired input is converted into string, and this data is stored in a line at that 

time and then this is continued until the operation is stopped. The benefit of having this is 

that, there is no error in data logging. For every iteration, the converted data is stored in 

spreadsheet string of the file. When the STOP button is pressed it forces the program to 

stop data acquisition loop and close the file.  
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Figure 3.7 GUI Interface for experimental setup 

 

 

3.1.5 Data Processing 

 The data recorded is then filtered to avoid time delay errors during operations.  

The actual force value is taken as the average of forces recorded from the iterations 

during that time interval. Same procedure is followed for the forces obtained from other 

two channels. This ensures the accurate collection of data and reduces the possibility of 

errors. Similarly while measuring the surface roughness, surface roughness tester TR100 

is positioned along the axis passing through the center of workpiece. This procedure is 

carried out three times at 120 degrees interval and final value is recorded from the 

average of the three reading.  
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Figure3.8 TR100 Surface tester for measurement of surface roughness 

 

3.1.6 Calibration of Setup 

 In order to ensure the accuracy of the acquired data, it is necessary to perform 

validation and benchmarking tests. It was performed on the experimental setup used for 

data acquisition. For testing, trial and error method was used to validate the accuracy of 

setup for reading forces acting on tool. A USB S-block load cell was attached along the 

dynamometer for testing. The load cell displays the force acting on the dynamometer, 

which is then compared to the force read by the setup. The setup specifications are 

modified if necessary until the readings match with readings on lad cell display. This was 

carried out for the three directions to ensure that forces being measured in X, Y and Z 

direction are accurate. This calibration was not only performed at the start of trials, but 

also in between trials to ensure the accuracy. This testing and calibration can be seen in 

Figure below. 
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Figure3.9 calibration process of the setup for force measurement 

 

 During use of the TR100 surface roughness tester, it is also calibrated time after 

time from the provided apparatus. This is done to ensure the accuracy of surface 

roughness measurement readings. 

 

 

3.2 Experiments 

 This chapter mainly describes how experiments were carried out. Experimentation 

was done to obtain the data required to develop the neural network. Tests were carried 

out on AISI 4140 steel. 12 speed Jones and Lamson Lathe model was used for turning 

operation. The specimen with a diameter of 60mm, 500mm length and hardened 35 HRC 

is used. The tool used for this is one that is most commonly used for turning process 

DTGNR 163 C 0° Lead Angle 60° Triangle insert. It is product of Kennametal.  

 

  There are many process parameters that affect the performance of the turning 

process. Out of these parameters, spindle speed, feed and depth of cut have been varied in 
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different set of combinations. Its effect on surface roughness and cutting process is 

recorded.  

 

 

3.2.1 Statistical Design of Experiments 

 In order to limit the cost of experimentation, statistical design of experiments 

technique is used.  It helps to determine optimum number of experiments needed to 

model the process. It is the link between the statistical design and engineering 

applications. Design of experiments approach is used by researchers for selection of 

optimum parameters [34, 35]. The objective of this method is to determine a less 

expensive way to provide sufficient information for simulating the turning operation. Any 

process can be categorized into three main aspects from process improvement or control 

i.e.  Control factors , noise factors and system response. Control factors are the ones 

which dominate the performance of the process. Noise factors are the parameters that are 

difficult or rather expensive to control. Control factors for turning process are identified 

by the effect they have on system response, which in this case is represented by surface 

roughness and cutting forces.  Tool geometry, workpiece material, tool material are 

among the other control factors. Considering the process limitations, some of these 

factors are more economical to vary. Characteristics such as Spindle speed, feed rate, and 

depth of cut, which have most effect on turning process and are easier to vary. These 

parameters are defined as principal control factors.  

 

 The experiments are carried out for different combinations of the chosen 

parameters. These parameters are as follows.  

1. Spindle speed. 

2. Feed rate. 

3. Depth of cut. 

 
 Once these parameters are identified, next step is to select the operating values for 

them. The ranges of the values selected are recommendations from material data 
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handbook, to avoid the variance due to tool wear. The objective of this study is to choose 

the most economical parameters without compromising the accuracy of the model of the 

turning operation. The number of levels of the parameter values directly affects the 

experimentation cost.  

 

- Spindle speed 

 This parameter signifies the speed with which the spindle of the machine. The 

direction of the rotation is anticlockwise. It is also referred as cutting velocity It is 

measured in terms of meters per minute (m/min).  

 Four values over possible range of selection are selected are as follows 

 S1= 433 rpm (corresponds to � = 104 m/min) 

 S2= 622 rpm (corresponds to � = 149 m/min) 

 S3= 881 rpm (corresponds to � = 211 m/min) 

 S4= 1264 rpm (corresponds to � = 305 m/min) 

 

- Feed rate  

 It is the rate at which the tool will advance for every revolution of the workpiece. 

The feed rate is determined by the size of the chip that the tool can withstand. It is 

measured in terms of mm/revolutions.   

 

Figure 3.10 Feed direction of the tool 

 

 F1 = 0.127 mm per revolution. 

 F2 = 0.1778 mm per revolution. 
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 F3 = 0.381 mm per revolution. 

F4 = 0.5588 mm per revolution. 

 

- Depth of Cut 

 It is the radial distance by which the tool is immersed into the workpiece.  It is 

measured in terms of millimeter. 

 

“Figure3.11 pictorial representation of depth of cut.” 

 

 D1 = 0.254 mm 

 D2 = 0.762 mm 

 D3 = 1.27  mm 

 D4 = 1.778 mm 

  

 Orthogonal Arrays (OA) are utilized so as to reduce the number of experiments. 

Orthogonal Arrays are equally spaced intervalsof control factor values. It is used so as to 

obtain result as that of the detailed experimental trials.   

  

 

3.2.2 Set of Experiments 

 As stated earlier, the spindle speed, feed rate and the depth of cut are selected as 

principal control factors for this study. During the experiment trials, values of these 

parameters are varied and cutting force and surface roughness values are recorded for 

each trial. Selected parameters are very crucial in order to simulate the accurate model of 

the turning process. Since four levels of parameter values are selected, there will be 4³ = 
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64 experiments. Range of the values selected for the spindle speed, feed rate and depth of 

cut are based on recommendation made by Walsh [31]. Equally spaced levels are used as 

shown in following table. 

 

Table 3.2 Indicating levels for different values of turning parameters 

Parameter  Level 1 Level 2 Level 3 Level 4 

Speed ‘v’(m/min) 104 149 211 305 

Feed rate ‘f’ (mm/rev) 0.127 0.1778 0.381 0.5588 

Depth of cut ‘a’  (mm) 0.254 0.762 1.27 1.778 

  

 

 

 

Figure 3.12 Pictorial representation set of experiments 
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3.2.3 Noise Factors 

 Noise factors are the parameters that affect the performance of the turning process. 

Elements such as tool wear, vibrations of the machine-external vibration, material defects, 

ambiant  temprature effects, white noise (due to electronic devices that are part of the set 

up) are considered among noise factors. Sometimes with same input parameters the 

output is oberved to be different if the noise factors are dominant. A few ways to reduce 

effect of such factors are, using a coolant, using vibration absorbers, using recommended 

input values. The use of coolant reduces effect of cutting temprature where as using 

recommended values reduce the tool wear.   

 

 A study was conducted to determine which of the control factors influence the 

surface roughness and the cutting forces the most. During this study, the output values of 

surface roughness and cutting forces are plotted for corresponding of the control factors 

values. For every trial plotted on the graph, two of the three control factors are kept 

varying and third is kept constant. Levels of the two variable control factors are indicated 

in the legend  provided along with each graph. It is clear from the Figure 3.15 and 3.16 

that feed rate influences the the surface roughness and cutting forces more, than the 

spindle speed and the depth of cut.   

 

 

Figure 3.13 Graphical representation of spindle speed effect on surface roughness 
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Figure 3.14 Graphical representation of spindle speed effect on cutting forces 

 

 

Figure 3.15 Graphical representation of feed rate effect on surface roughness 
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Figure 3.16 Graphical representation of feed rate effect on cutting forces 

 

 

Figure3.17 Graphical representation of depth of cut effect on surface roughness 
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Figure3.18 Graphical representation of depth of cut effect on cutting forces 

 

 

3.2.4 Data Analysis 

 

 

3.2.4.1 Forces Calculations  

 Once the trials are over, the data is stored in the excel sheets. Forces are recorded 

in X, Y and Z direction. Resultant force R is calculated using the following equation: 

 

 
222 FzFyFxFr                                                                              (3.1) 

 

 This “Fr” is vector quantity, which represents the forces recorded during each trial. 

As shown in equation 3.1. “Fr” takes into consideration, forces in all the three directions. 

It is very important to consider the resultant force. The workpiece material always has 

some surface irregularities such as hard points or vacancies (depression). When tool 

comes across such irregularities, cutting forces displays sudden jump or drop in recorded 

values. In spite of these patterns, the resultant force captures the real characteristics. 
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 4.   ANN MODEL OF TURNING 

 

 

4.1 Introduction 

 Simulation of a turning process is one of the important steps during this 

experimentation, without which optimization will not be feasible. Simulation should be 

modeled taking into account all the relevant process control factors. It should have 

reasonable accuracy. As seen in literature review, many processes are modeled 

mathematically. Unfortunately modeling of turning process using mathematical function 

to obtain surface roughness is a bit difficult task. Many researchers adopted this 

technique to predict similar outcome [17-20, 24-30]. Relation between inputs or control 

factors and surface roughness, forces is non-linear. We used Neural Network approach to 

model the process. Artificial Neural Network uses data obtained from experimentation in 

order to predict the outcomes.. This also helps to attain reliable results as there are no 

assumptions on functional relationship such as quadratic, cubic etc. 

 

 

4.2 Artificial Neural Networks 

 Use of ANNs can be traced back to many applications in a wide spectrum of 

fields, especially for applications which are difficult to generate mathematically. In the 

manufacturing field, besides turning operations, experiments were carried out to predict 

outcomes of milling, drilling machine etc. Geological, construction, analysis based 

applications have also adopted ANN approach. For output prediction within the metal 

cutting applications, ANN is utilized to predict different parameters that are rather 

difficult to evaluate using mathematical/analytical method e.g. cutting forces, surface 

roughness, tool path etc. Before discussing details of application of ANN technique for 

simulation of turning, we need to discuss details of ANN technique. Neural networks 
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consist of processing elements which are also known as neurons. Processing elements act 

as a middleman between accepting input information and producing output information. 

Mathematically, mapping of input vectors is carried out on output vectors. The reason of 

using ANN to simulate a model is that, the model can be claimed to generic and complete 

so as to predict fairly accurate results.  

   

 

4.2.1 Elements of Artificial Neural Networks 

 ANN consists of following things: 

1. Processing Elements (PE) or Neurons. 

2. Connection weights. 

Combining these two elements will result into topology of the Neural Network. 

 

 

4.2.1.1 Processing Elements/Neurons 

 Each Processing Element performs simple computations. In case of an Input P.E., 

it receives input and produces output value. Value of output is dependent on the input 

value supplied to the P.E. Computation can be divided into two types. The first 

component is linear component is called input function iIn  and second component which 

is non-linear is called activation function g. For other types of P.E. all inputs are 

combined before the P.E.:  

 

 
iij

j
iji aWaWin **,                                                                                       (4.1) 

  

 Computation step where a P.E. calculates the activation function, g, as a result of 

input function value: 

  

ܽ௜										݃ሺ݅݊௜ሻ 	ൌ 		݃൫∑ ௝ܹ,௜		 ௝ܽ௝ ൯                                                                       (4.2) 
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ܽ௜      Activation value of unit I (also output of the unit) 

௜ܹ,௝   Weight on the link from unit j to unit i 

௜ܹ     Weight from unit I to the output in perceptron 

݃        Activation function 

 

 Following are the important qualities of Processing Elements. These qualities 

facilitate parallel operation of neural network. 

 

1. Only local information is required. Rest of the required information is within the P.E. 

to produce output from the available input. No other information is required by P.E. 

2. Output value is generated, and provided to following P.E.s or to the output of the 

network. 

 

W1j

Yj

Output

Input g

 

Figure 4.1 Processing element architecture 

 

4.2.1.2 Network Connection Weights 

 Weight is the numeric value assigned to connection between Processing 

Elements. Weights are responsible for the storage of the changes that the neural network 

goes through while training. Learning of the network usually takes place when weights 
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are updated considering the predicted and actual values. Biases are special case of 

network weight in general. 

 

 

4.2.2 Training Methods 

 The aim of training the neural network is to make it more evolved and have strong 

relation with Inputs and outputs. We have selected Back Propagation as training method 

for NN model. Following are the reasons to justify the selection. 

 

1. Standard Back Propagation is a gradient descent algorithm. Name Back 

propagation refers to the way in which gradient is calculated for non-linear multi-

layer Neural Network. 

2. It provides fairly accurate results for the Input data that it has not been exposed 

to. If a new input is presented, it will lead to an output which is fairly accurate for 

input vectors used in training that are similar to new input being presented. 

3. The order in which inputs are presented to the NN does not affect accuracy of the 

training procedure. This is achieved because an adaptation is being done only at 

the end of each epoch. 

  

 Second reason mentioned above, is key reason why we chose this training 

method. We have discussed the design of experiment study, where we selected particular 

step values of machining parameters in order to achieve low cost of experimentation.  

 

 

4.3 Back Propagation Algorithm 

 Back-propagation is the most popular method of learning in multilayer networks. 

If there is a difference between the predicted value and an actual value, which is referred 

as error, network connection weights (i.e. one of the main constituents of the network) 

are adjusted so as to reduce the error. However, the important thing is to narrow down the 

weight that needs to be adjusted in order to improve the result. It is also important to 
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understand that, values are provided for training as well as for comparison of the 

network.  In another way the network weight is responsible for error. Back propagation 

algorithm has sensible approach to divide and identify the contribution of individual 

weight. Error is defined as: 

 

 ௥௥௜ =   ௜ܶ  -  ௜ܱ                                                                                                   (4.3)ܧ

 

 ௥௥௜  Error i.e. difference between target and outputܧ

௜ܶ      It is the target value provided to the network 

௜ܱ     It is the output value calculated by the network.  

 

 As mentioned earlier, when there is an error, connection weights are adjusted. 

E.g. the weight update rule for connection weight from I to j is calculated as: 

 

௝ܹ,௜           ௝ܹ,௜ + α * ௝ܽ * ܧ௥௥௜ * ݃ᇱ (  ݅݊௜)                                                          (4.4) 

 

α   Is it the learning rate of the network. 

݃ᇱ  Is derivative of the function  ݃. 

௝ܽ   Is the hidden processing elements. 

 

For the simplicity of the calculations the equations can be rewritten as: 

 

௝ܹ,௜           ௝ܹ,௜ + α * ௝ܽ *  α*   ∆	௜                                                                    (4.5) 

    

Hence for output nodes 

∆	௜  =   ܧ௥௥௜ * ݃ᇱ (  ݅݊௜)                                                                                     (4.6) 

 

 Error back propagation is carried out in the following way. Suppose the hidden 

node j is responsible for part of error or fraction of error   ∆	௜ in output nodes. Since,  ∆	௜ 

values are dependent on connection weights between hidden nodes and output nodes, this 
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is propagated back to provide ∆	௝  values for the hidden layer. Hence in this way 

propagation of the ∆	  values is carried out to reestablish the weights and attain more 

accuracy. Propagation can be described in the equation form as follows. 

 

 ∆	௝  =   ݃ᇱ (  ݅݊	௝)   ∑ ௝ܹ,௜		∆		௜௜                                                                         (4.7) 

 

∆	௝  For errors among j nodes, calculated similar to that of node “i “as shown 

 above. 

 

 We have discussed the updating procedure of connection weights among the 

hidden layer and output layer. Procedure for updating the connection weight between 

hidden layer and input layer is almost identical to that of output layer.  

 

௞ܹ,௝         	ܹ௞,௝ + α * ܫ௞ *   ∆	௝                                                                          (4.8) 

 

 .௞     Is the Input processing elementsܫ

 

 Work of back propagation algorithm can be summarized as follows. 

 

1. Calculate the error between target value and output value of the network. 

2. Calculate the value of  ∆ from the available values. 

3. Propagate the   ∆		 values to the layer before output layer and further. 

4. While doing so, keep updating the connection weights between consecutive 

layers. 

 

 

4.3.1 Training and Validation 

 The provided experimental data is divided among three stages i.e. training, testing 

and validation respectively. This data subdivision is carried out by inbuilt characteristic 

of matlab neural network tool. During training, the connection weights of the processing 
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elements are updated to predict results. This is done with help of target values supplied 

by the user. During the learning phase of the network, pairs of input and output are 

supplied to the network. Inputs are used to create the input vectors and output vectors are 

calculated which are then compared to output values of the data supplied by the user. If 

the errors are zero, no learning takes place. Next step is testing, during this stage already 

trained network’s prediction is gauged with actual data and error is calculated. This error 

is estimation of how well the NN model is predicting the outputs. During this stage we 

get to understand how well the network has been trained. The network is trained until the 

errors are to the minimum level. Next stage is validation, during this stage data which is 

unknown to the network model is presented and NN model is made to predict the 

outcomes. During this stage we get to know whether use of this NN model is practical or 

not. All these stages are equally important as each stage indicated performance of NN 

model at various levels.     

 

 

4.3.2 Predictive Surface Roughness Model 

 Selection of the output variables is done carefully depending on the requirements 

or expectations of the user. For Neural Network model to simulate turning process and 

estimate the expected relevant variables, input parameters selection is very crucial. The 

accuracy of prediction of the network could hamper if selected input parameters are not 

influential with reference to the expected output. The output parameters that we need the 

NN model to predict are as follows: 

1. Cutting forces in Z -Direction. 

2. Cutting forces in Y -Direction. 

3. Cutting forces in X -Direction 

4. Surface roughness  ܴ௔. 

 

 For optimization purposes, resultant cutting force is considered as a constraint, as 

excessive resultant cutting force could result into tool deterioration, which would 



 42

eventually affect the surface roughness. Thus, it would be sufficient just to be able to 

predict the maximum resultant force accurately.  

 

 

Figure 4.2 Neural network topology 

 

 As shown in Figure 4.2, Size of the input layer and the output layer is fixed. The 

vector length of input vector is 3 components and for the output vector it is 4 

components.  Hence this indicates the topology of the network to be 3 - ௜ܺ  – 4.  ܺ 

Represents the number of processing elements and “i” represent number of hidden layers. 

In order to Figure out the number of processing elements in the hidden layer, we 

conducted following study. Since we were not sure what should be the number of 

processing elements, and number of hidden layers of finalized Neural Network model, we 

conducted a network training of various NN models with different hidden layers and 

different number of processing element. After comparison of the accuracy for prediction, 

3-15-15-4 combination was found to be most accurate. This included two hidden layers 

with 15 processing elements each. The activation function of the two hidden layers is 

sigmoid function, whereas output layer has pure linear function. We will be discussing 

this in detail in section about network topology. 
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4.3.3 Data Preparation 

 Training the neural network requires a set of data in input and output format. In 

order to provide the data in such form it is very important to process it. The way in which 

data is recorded, dictates how much work needs to be done for processing it. In this case, 

the data is recorded as force component in X-axis direction, Y-axis direction and Z- axis 

directions.  Processing is done as follows. 

    

  To facilitate the training of the NN model to predict the designated outputs, it is 

very important that the data should be processed in pattern.  

 

 Procedure:  

 Step 1: For each iteration, resultant force ܨ௥  is calculated from recorded 

experimental data. It consists of  Fx, Fy and Fz. Hence ܨ௥ is calculated as, 

 

  
222

zyx FFFF            (4.9) 

 Step 2: Average of the surface roughness values is recorded from the three 

measurements taken at 120 degrees apart. These steps are repeated for each experiment. 

Please refer to following table for sample calculations.  
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Table 4.1 Sample of the data processing 

 

 ௫ܨ  ௬ܨ  ௭ܨ ௥ܨ   ܴ௔_1  ܴ௔_2  ܴ௔_3  ܴ௔_average

42.89585  104.2802  135.7829 176.4976 0.9  0.0.938  0.907  0.915 

47.6057  117.241  133.665  184.06  0.887  0.92  0.908  0.905 

53.57264  129.3938  147.9112 203.6922 0.9  1.1  1.06  1.02 

63.547  140.682  140.658  208.8404 1.1  0.95  0.965  1.005 

49.89166  130.1915  176.8473 225.1976 1.12  1.5  1.355  1.325 

53.8106  141.713  166.2751 225.0013 1.5  1.415  1.45  1.455 

56.4738  152.892  161.2431 229.2697 1.125  1.512  1.518  1.385 

59.34957  164.911  152.5892 232.3822 1.21  1.421  1.464  1.365 

40.8008  170.1425  180.5421 251.4133 5.236  7.129  6.73  6.365 

28.23982  145.5337  178.2087 231.81  7.142  6.03  5.593  6.255 

 

 Step 3: Training/Testing pattern vectors are now formed. Each pattern is formed 

with an input condition vector, 

 

  Input Vector  ൌ	 ቎
݁ݐܴܽ	݀݁݁ܨ

݀݁݁݌ܵ	݈݁݀݊݅݌ܵ
ݐݑܥ	݂݋	݄ݐ݌݁ܦ

቏ 

          

And the corresponding target vector, 

 

  Target Vector  ൌ	 ൤
݁ܿݎ݋ܨ	݃݊݅ݐݐݑܥ	ݐ݊ܽݐ݈ݑݏܴ݁
	ݏݏ݄݁݊݃ݑ݋ݎ	݂݁ܿܽݎݑܵ

൨     

 

 Step 4: For the NN model to simulate the turning process accurately, it is required 

that the data used for training is normalized. Normalization of the data brings consistency 

within the database and reduction of redundant data occurs.  

 

 ܺ ൌ ሺ	ܺோ -  ܺெ௜௡ )  
	௑ಿ	೘ೌೣ	ି		௑ಿ	೘೔೙

	௑೘ೌೣ	ି		௑೘೔೙
  +  ܺே	௠௜௡                                              (4.10) 
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Whereas, 

 ܺ     =   Normalized value of the variable. 

ܺோ  =   Real value of the variable. 

ܺ௠௔௫   = Maximum value of the variable (Upper limit of the parameter boundary). 

ܺெ௜௡    = Minimum value of the variable (Lower limit of the parameter boundary). 

ܺே	௠௔௫  =   Maximum normalized value of the parameter. (ܺே	௠௔௫  < = 1) 

ܺே	௠௜௡  =   Minimum normalized value of the parameter.  (ܺே	௠௜௡ >= 0.1) 

 

 

4.4 Network Topology 

 NN Model is created using Matlab Neural Network toolbox. Matlab tool 

facilitates ease of simulation and modeling. As discussed earlier, size of input and output 

vector is decided. Trials are first conducted by randomly selecting number of processing 

elements. Judgment of the accuracy of prediction is done on the basis of the mean square 

error at the end of the training. The range of selection of the processing elements was 

narrowed down carefully, on the basis of result of performance for prediction. Among the 

range of 10 to 20 neurons, NN model was observed to perform with very good accuracy 

for prediction. The data used for this study is recorded for one of the five inserts used 

during the experimentation. Since all the inserts have most of the important 

characteristics identical, this data could be used for selection of topology of Neural 

Network. Following table depicts the performance of Neural Network Models ranging 

between 10-20 processing elements. NN models are created with one hidden layer and 

varying number of processing elements or neurons. As per White’s theorem, one layer 

with non-linear activation function is enough to map non-linear functional relationship in 

a fairly accurate way [54]. 
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Table 4.2 Network Comparison for best validation performance 

 

Number of 

Neurons in 

hidden 

layer 

Validation 

Performance epoch Reason For Stopping 

Network 

Configuration

15 0.00257 2 Validation Stopped/Max Iterations 3--15--2 

16 0.0029 5 Validation Stopped/Max Iterations 3--16--2 

14 0.00333 11 Validation Stopped/Max Iterations 3--17--2 

17 0.00342 1 Validation Stopped/Max Iterations 3--17--2 

13 0.00405 2 Validation Stopped/Max Iterations 3--13--2 

18 0.00564 1 Validation Stopped/Max Iterations 3--18--2 

12 0.00567 5 Validation Stopped/Max Iterations 3--12--2 

19 0.0077 1 Validation Stopped/Max Iterations 3--19--2 

20 0.00851 4 Validation Stopped/Max Iterations 3--20--2 

11 0.0098 5 Validation Stopped/Max Iterations 3--11-2 

 

 

 The arrangement of the table is done in descending order of the validation 

performance measure. Hence, first combination i.e. having 15 processing elements is 

selected. Another reason why the network size was chosen to be limited to such a number 

was that as the size of network becomes larger, generalization characteristics suffer due 

to increased number of connections. Also computational expense increases in proportion 

to the size of the network. In latter part, two hidden layers were introduced. This brought 

more accuracy in parameter prediction. As limited by the Matlab Neural network tool, the 

number of neurons for both layers is simultaneously selected.  
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Table 4.3 Effect of number of hidden layer on NN Model Performance 

 

Neurons in 

Hidden 

Layer 

Validation 

Performance Epoch Reason for Stopping 

15-15 0.00126 0 Max Iterations/Validation Stopped  

16-16 0.00154 4 Max Iterations/Validation Stopped  

17-17 0.00191 0 Max Iterations/Validation Stopped  

14-14 0.00261 4 Max Iterations/Validation Stopped  

13-13 0.00266 22 Max Iterations/Validation Stopped  

 

 

 As shown in the table, increasing the number of hidden layers does not 

significantly increase the performance of the Neural Network Model. Hence network 

configuration was chosen to be 3-15-15-2.  Similar configuration is to be used from now 

on for predicting the performance of rest of the four types of insert.  

 

 

4.4.1 Network Testing and Simulation 

 Once the network structure is finalized and data to be used for functional 

requirements of the NN model is converted into useful format, training, testing, and 

validation of the NN model can be started. Matlab NN toolbox has characteristic of 

dividing the available data into 70 percent for training, 15 percent for testing and another 

15 percent for validation of the NN model.   
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Figure 4.5 Comparison of Actual values and Values predicted by selected Best NN model 
for Insert FF 

 
 

 Figure 4.6 represents a linear regression analysis between the network response 

and the network output. It can be inferred that NN model does good mapping. 15 percent 

of the data which was used for validation was not used for training at all. Hence 

performance of these machining conditions is something that the Neural Network model 

has never experienced before. Therefore, we can consider this mapping to be true and 

representing functional relationship.  
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Figure 4.6 Regression Analysis of response for Surface roughness prediction 

 

 Similarly, the NN models were created for four other types of insert. Performance 

and values of R for training, testing and validation are also included in the table so as 

give a clear understanding. Closer the value of R is to 9, better is the performance. 
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Table 4.4 Comparison of NN performance created for five different inserts 

 

Insert 

Type 

Validation 

Performance 

R 

Training 

R 

Testing 

R 

Validation Avg  R 

FF 0.00126 0.999 0.997 0.979 0.991667

FN 0.00149 0.998 0.992 0.959 0.983 

MN 0.00126 0.998 0.992 0.959 0.983 

RN 0.00258 0.984 0.946 0.973 0.967667

RP 0.00345 0.998 0.985 0.932 0.971667

 

 

4.4.1.2 Design Details of ANNs 

For all the experiments carried out for selection of best NN model for particular insert, 

details of ANN design is given below. 

 

 Network type feed-forward back propagation, subsequent layer getting inputs 

only from adjacent layers. 

 Number of inputs fixed to 3. Feed, speed, depth of cut. 

 Number of Hidden Layers varied between 1 and 2. 

 Type of training function used: TRAINLM (Levenberg-Marquardt Algorithm). It 

is robust technique and it finds solution even if it starts very far off accurate 

results. It is built in function in Matlab NN tool.  

 Mean Square Error (MSE) function is used to judge the performance of the NN 

model and determine weight changes. Maximum number of epochs fixed to 100 

for proper training. Performance goal to be set as 0. Total number of 6 validation 

checks are carried out.  
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4.4.2 Network Simulation 

 For checking the validity of obtained results, the Neural Network model is used to 

predict values of machining parameters that it has not yet encountered during training. 

Thus we can understand the accuracy with which selected Neural Network is performing. 

10% data from available actual results is randomly chosen for validation. Network is 

simulated using selected values. Output is then plotted for each Neural Network 

representing each type of insert. Actual values of the surface roughness for those values 

of machining parameters is also plotted on the same graph so as to have better visuals of 

accuracy of simulation or prediction.  

 

 

Figure 4.7 Comparison of actual and predicted surface roughness values for Insert 
TNMG160408FF  
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Figure 4.8 Comparison of actual and predicted surface roughness values for Insert 
TNMG160408FN 

 

 

Figure 4.9 Comparison of actual and predicted surface roughness values for Insert 
TNMG160408MN 
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Figure 4.10 Comparison of actual and predicted surface roughness values for Insert 
TNMG160408RP 

 

 

 

Figure 4.11 Comparison of actual and predicted surface roughness values for Insert 
TNMG160408R 
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Figure 4.12 Comparison of actual and predicted cutting forces values for Insert 
TNMG160408FF  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 Comparison of actual and predicted cutting forces values for Insert 
TNMG160408FN  
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Figure 4.14 Comparison of actual and predicted cutting forces values for Insert 

TNMG160408MN  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 Comparison of actual and predicted cutting forces values for Insert 
TNMG160408RN 
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Figure 4.16 Comparison of actual and predicted cutting forces values for Insert 
TNMG160408RP  

 

 

Table  4.5 Percentage error for values predicted by Insert FF 

 

 Parameter  Trial 1  Trial 2  Trial 3  Trial 4  Trial 5  Trial 6 

 Resultant 

Cutting Force -8.2867 -4.13058 3.879744 7.23306 8.119455 -5.79581 

 Surface 

Roughness 7.791287 4.046172 -2.7304 -6.77041 6.06633 8.368709 
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Table  4.6 Percentage error for values predicted by Insert FN 

 Parameter  Trial 1 Trial 2  Trial 3  Trial 4  Trial 5 Trial 6 

 Resultant  

Cutting Force 2.650696 1.481016 -3.2581 5.444909 -7.85738 -3.35351 

Surface 

Roughness 1.235022 3.2922 3.705668 -7.80028 4.698368 -4.68559 

 

 

Table  4.7 Percentage error for values predicted by Insert MN 

 Parameter  Trial 1  Trial 2  Trial 3 Trial 4 Trial 5 Trial 6 

 Resultant 

Cutting Force -4.871 -4.03071 -3.28241 3.931796 -6.56621 -2.58617

Surface 

Roughness -7.77751 -3.5498 6.196944 -6.48454 3.850617 4.933518

 

 

Table 4.8 Percentage error for values predicted by Insert  RN 

 Parameter  Trial 1  Trial 2  Trial 3  Trial 4  Trial 5  Trial 6 

 Resultant 

Cutting Force  7.050412 -12.4813 -1.35157 6.010696 8.2058 -9.62814 

 Surface 

Roughness 2.611493 -3.26777 -2.26538 7.773411 -4.54434 -7.04594 
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Table  4.9 Percentage error for values predicted by Insert RP 

 

Parameter  Trial 1  Trial 2 Trial 3  Trial 4  Trial 5  Trial 6 

Resultant  

Cutting Force -3.66102 -9.77929 9.209145 -3.78384 -1.95213 -3.71535 

Surface 

Roughness -0.94109 9.323578 -4.66953 -8.76684 -2.56426 3.288333 

 

 

NN models are created to predict surface roughness and cutting forces. Results of 

validation of these NN models makes it is easy to understand that these models accurately 

predict values for unseen data. Hence these NN models can be used for further 

experimentation for optimization of machining parameters. 
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5.  PSO (PARTICLE SWARM OPTIMIZATION TECHNIQUE FOR OPTIMIZATION 

OF TURNING PROCESS PARAMETERS) 

 

 

5.1 Introduction 

 Once a reasonable level of accuracy is attained by the neural network model of 

turning process, it is used effectively for optimization of the process parameters.  

Calculating the optimum cutting parameters of the turning process is a very important 

step of this study. In the literature review section a lot of emphasis is done on the 

comparison among different optimization methods and selection of this technique. 

Considering the complicated nature of the objective, to optimize input cutting parameters 

of turning process to minimize surface roughness, Particle Swarm Optimization 

technique proves to be very helpful.  

 

 

5.2 Optimization Model 

 In general, objective of the optimization problem is to achieve either minimum or 

the maximum value of the parameter, which is the target. This objective can be 

demonstrated using mathematical function, program code, as well as using neural 

network. This objective which is to be either minimized or maximized is subjected to 

partial constraints. 

 

  

5.2.1 Objective Function 

 During the literature review, several objective functions were found that are used 

for machining optimization. Cutting time, tool life, production cost etc. have been used as 

frames to optimize turning parameters. However use of these functions is limited 
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considering applicability and generalization. For example, mathematical equations 

representing cutting cost (Equation 2.1), tool cost (Equation 2.5), and material removal 

rate (Equation 2.7) are subjective because the parameters in these equations are obtained 

using deterministic approximations, or its applicability is very limited. For this reason, 

these parameters are only useful when all the process parameters are well known to the 

user. However not every parameter or outcome can be described analytically; in which 

cases the evolutionary Neural Network technique is used for predicting the output. 

 

 It has been observed that actual surface roughness measured from experimental 

data does not match theoretical values calculated from existing analytical formulation. 

This is because of characteristics such as adhesion, ploughing, and geometrical effects, 

which cannot be easily modeled using analytical models [51]. 

 

 

 

Figure 5.1 Swarm Intelligence Neural Network System [51] 

 

 Inputs provided to the Neural Network model are feed rate, spindle speed and 

depth of cut while the output is surface roughness and resultant cutting force. Neural 

Network model with sufficient accuracy integrated with multi-objective particle swarm 

optimizer will provide useful information to the user during selection of machining 

parameters.  
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5.2.2 Problem Constraints 

 For any optimization problem, besides objective function, constraints is the next 

important thing. For the optimization problem, to produce realistic and meaningful 

results, these constraints must be satisfied.  These constraints are nothing but 

mathematically defined limitations for the process and are used to define the range within 

which the parameters must operate. For the turning process, constraints could be 

classified under parameter boundaries, tool life constraints, operating constraints (i.e. 

cutting force constraint and/or power constraint). Chip-tool interface constraints are also 

utilized in some optimization problems. The focus of this experiment deals with 

parameter boundaries such as range of feed rate, spindle speed and depth of cut. 

However, these constraints can be subdivided into input and output constraints. Input 

constraints are for limiting the values of input parameters. Values that are randomly 

selected by the PSO program for inputs are selected with these inputs. Another type of 

constraints is output constraints, resultant cutting force is considered among these 

constraints. If the predicted value of resultant cutting force is beyond the maximum value 

then the corresponding input set is also discarded.  

 

1. The available range of cutting speed(m/min) is expressed in terms of upper and 

lower boundary  

ெܸ௜௡  <   V   <  ெܸ௔௫                                                                                           (5.1) 

 

We provide lower boundary value to avoid formation of built up edges, whereas 

the upper boundary is for the safety of the operator. 

 

2. Available range of feed rate (mm/rev) is expressed in terms of upper and lower 

boundary. 

 

ெ݂௜௡  <   f  <  ெ݂௔௫                                                                                              (5.2) 

3. Range of Depth of cut available is, 
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݀ெ௜௡  <  d  <  ݀ெ௔௫                                                                                             (5.3) 

 

4. The maximum cutting force permitted by the cutting system is the maximum 

allowable force that either a tool or work piece can withstand. This constraint 

allows the force prediction model to set up the condition that, if the predicted 

force value is beyond the maximum cutting force permitted, then the user has to 

modify the values of feed or depth of cut in order to avoid causing the tool to be 

overstressed. In other words maximum force allowable can be used as physical 

limitation of the optimization process.  This force is necessary as it limits the 

deflection of the tool or work piece. Deflection of the tool or work piece can 

induce the dimensional errors. With maximum value of allowable force being 

known it can also be used to limit the power consumed by the machine in certain 

cases. Hence the maximum cutting force can be given as  

 

஼௨௧௧௜௡௚    =  ݇ଵ  *  ௥݂ܨ
௨  *  ݀௥௩        <   ܨெ௔௫                                                         (5.4) 

 

 ஼௨௧௧௜௡௚ = Cutting force with current input parametersܨ

݇ଵ, u, v  = Constants  of the cutting force equations.  

௥݂          = Feed rate in turning  

݀௥         = Depth of cut in turning 

  .ெ௔௫     = Maximum allowable forceܨ

 

 In this study, out of all the force characteristics calculated by the force model, 

resultant force was found to be maximum. The following Figure depicts how resultant 

force acts on the tool. In turning process, resultant force has components in 3 directions 

i.e. X, Y, and Z axis direction. This resultant force is used to calculate the maximum 

allowable stress on the tool without causing any deflection. Safety factor selection is also 

very helpful as it defines the margin of security.   
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Figure 5.2 Components of resultant cutting force 

 

In another study of the components of resultant cutting force it was noticed that forces in 

Z direction are the most dominant of them all. As matter of fact, force component in Z 

direction constitutes about 80% of the resultant force. This was proved in the following 

study. In this study resultant force was calculated using following formula. 

 

௫ଶܨୀඥ	ோ௘௦௨௟௧௔௡௧ܨ ൅	ܨ௬ଶ ൅	ܨ௭ଶ                                                                            (5.5) 

 

 Now the cutting force in Z direction is plotted along with values of resultant force 

for some trials. Selection of trials was done randomly.  

 

Figure 5.3 Comparison of magnitude of resultant cutting forces and force in Z-direction 
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F resultant
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Figure 5.4 Maximum Force component Ratio 

 

 

 The ܨெ௔௫  in the Equation 5.4 is a constraint for the optimization problem, as 

keeping the force beyond the value where tool can break is one of the objectives. This 

constraint also interferes with the tolerance and factor of safety. When resultant cutting 

force is ensured to be always less than	ܨெ௔௫, we are limiting the maximum component 

forces going beyond such magnitude.  

 

 

5.3 Optimization Methodology 

 The objective of this study is to obtain minimum surface roughness while 

optimizing the control factors i.e. input parameters of the turning process simulation 

model. The objective function used for optimization objective is constructed using Neural 

Network model. Using different optimization techniques for multiple parameter 

optimization task, there is always a concern that a path of the optimization process should 

be concluding at global minimum rather than stopped at local minima. As this 

optimization objective is complex and non-linear, we have chosen to apply the 

“Evolutionary Techniques” of optimization. The Particle Swarm Optimization (PSO) 
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technique has shown great caliber while dealing with multi-parameter optimization tasks 

and demonstrated excellent results. PSO also holds advantage over genetic algorithms for 

optimization objectives of similar nature. In genetic algorithms, chromosomes share the 

information so that the whole community gradually moves to area where best solution 

could be spotted. In PSO the information is sent out by best particle and then the whole 

group converges around the same point [52]. In PSO, each particle has assigned velocity 

with which it traverses through the solution space. Using PSO technique it is possible to 

search the optimum solution in multiple dimensions.  

 

 The Particle Swarm Optimization is a stochastic optimization technique. The PSO 

is originated from the research of food hunting of birds, how the course of flight flock of 

birds would always scatter and gather as whole with individuals always keeping most 

suitable distance. It is found that there is social information sharing mechanism in 

biological communities, which is important from their evolution point of view. This 

provides basis for formulation of PSO [52]. Specifically, the PSO technique is mainly 

inspired in social behaviors where the search for a “common best solution” drives the 

whole set of particles. 

  

The PSO technique has ability to deal with problems related to non-differentiality, 

high dimensions, multiple optima as well as nonlinearity. In PSO technique each single 

solution is a particle in the search place. These particles hold a fitness value which is 

evaluated by fitness function. During the optimization process, particles traverse along 

with this path with these velocities within the search space. This search space is limited 

by the constraints applied to the problem by process limitations. The best position of the 

particle found during this process, is the best solution found by that particle. Also, the 

best position of all the particles as a group is considered as best solution. Best position is 

called as ஻ܲ௘௦௧, and best solution is called as	ܩ஻௘௦௧.  Every particle, as it travels within the 

search space keeps updating these solutions.  
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 In Evolutionary Techniques, search for potential solution is carried out in allotted 

space as opposed to traditional search techniques. Using population interaction, these 

techniques provide rapid solution. Population based search methods can be defined as:  

 

 P’ = m(f(P))                                                                                                        (5.6) 

 

Where, P is multiple sets of positions in search space also called population, f is fitness 

function, ‘P’ is a vector that signifies the optimal value of each member of P and m is 

manipulation function of the population. 

  

 In PSO technique, each particle is a point in solution space. Therefore, for total of 

N particles of swarm, position of  ܫ௧௛ particle will be ூܺ . While I=1,2,3,4……….,N. Then 

ூܺ can be represented as follows. 

 

 XI = (xi1, xi2, xi3, … , x1N)                       (5.7) 

 

 As mentioned before, for every particle,  ஻ܲ௘௦௧ i.e. best value based upon outcome 

of fitness function (Neural Network model in this case) is considered as “previous best 

position” and it’s represented as:  

 

 PI = (pi1, pi2, pi3, …, piN)              (5.8) 

 

 .஻௘௦௧ i.e. best position for the whole group of particles. G implies total groupܩ	 

Hence 	ܩ஻௘௦௧ is represented as: 

 

 PG = (Pg1, pg2, pg3, … , pgN)                                                                                (5.9) 

 

 Another fundamental characteristic of the swarm particle is the velocity. It is the 

speed with which the particle traverses through the solution space. Velocity vector is 

represented as: 
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 VI = (vi1, vi2, vi3, … , viN)                    (5.10) 

 

 For every step of the process, velocity is calculated based on previous best 

individual position as well as best position of the group.  This is calculated using 

following formula. 

 

 vin = w*vin+c1*rand1*(pin – xin) +c2*rand2*(pgn – xin)                                     (5.11) 

 

 Where, 

 W: inertia weight  

 C1 and c2: two positive constants 

 Rand1 and rand2: two random functions in the range of  [0,1] 

 

 This equation consist three parts. First part is previous velocity of the swarm 

which represents present stage. Second part is cognition model and third part is social 

modal. These three parts together determines the ability of searching the solution space 

[52]. As the particle moves to the next position, it is calculated as: 

 

 xin = xin +vin                                                                                                   (5.12) 

  

The performance of every swarm is gauged by using fitness function. 

 

 For every swarm particle, the values of feed rate, spindle speed and depth of cut 

define the position and weather the swarm has reached its optimum position or not. While 

doing this, the particle will keep traversing in the three dimensional space. The 

performance of course will be defined by objective, which in this case will give the 

surface roughness.  

 

 The optimization procedure can be summarized as follows: 
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Figure 5.5 ANN – PSO Relation, pictorial representation 

 

Where, 

ܴ௔       : Surface Roughness 

ܴி௢௥௖௘ : Resultant cutting force 

Feed : Feed rate values for the process (mm/rev) 

Speed : Speed or revolution of the machine (m/min) 

DOC : Depth of Cut (mm) 

ANN : Artificial Neural network 

Input : Recorded Input data from trials used for training ANN model 

Output : Recorded output data from trials used for training ANN model 

PSO : Particle swarm optimization 

 

 This Figure above is the representation of course of action of decision making, 

evaluation and result is calculated during the PSO process. As shown in the Figure, Input 
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and output matrices which consists data from experimentation, are used to train and 

validate the neural network. Range of values of Feed rate, spindle speed and depth of cut 

are used by NN model to predict surface roughness and cutting forces values. The next 

step is using the values predicted by the NN model for the PSO process. Boundaries are 

set up for the choice of input values i.e. feed, speed and depth of cut which are called 

constrains in problem definition. This is followed by applying the PSO methodology until 

the desired value for surface roughness is reached for corresponding input values. Until 

the desired roughness is achieved, the process parameters are re-defined and new 

iteration is started. This goes on until all the stopping criteria for the optimization process 

is being met. 

 

 

5.3.1 Optimization Program Code 

 For the PSO program, to perform well and produce optimum results, problem 

constraints are very essential. Constraining the control factors which are feed rate, spindle 

speed and depth of cut, is part of user inputs. The other aspects are, data perpetration, 

and, application of PSO and finding optimum results. Choice of a number of particles to 

do the optima search as well as selection the criteria for most number of iterations are 

also considered as important elements categorized under user inputs. User inputs selected 

for PSO code is as follows. 

 

 0.127 < Feed Rate (mm/rev) < 0.5588   

 0.254 <  Depth of Cut (mm) <  1.778  

 104  < Speed (m/min)  < 305 

 Number of particles: 20 [53] 

 

 

Once the problem constraints and process constants or other user inputs are assigned, 

optimization procedure can be started. It can be roughly divided into four important 

aspects.  
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 Objective function and its evaluation 

 Calculation of particle best position of the particle ( ஻ܲ௘௦௧)  

 Calculation of global best position  (ܩ஻௘௦௧) 

 Stopping Criteria 

 

 We have discussed about objective function and its evaluation in previous topics. 

The calculations for particle best and global best positions are most crucial part of PSO 

technique. The stopping criteria have been established for the optimization program to 

stop the iteration. It is, condition 1, the difference between the surface roughness values 

for the consecutive iterations should be less than the epsilon value mention in the code.  

Condition 2, checking condition 1, for next 50 iteration to ensure consistency. The Figure 

5.7 represents the values of roughness obtained from the objective function at different 

iterations kept reducing until the stopping criteria were achieved.  Surface roughness 

values are observed to drop at high rate until first 25 iteration.  After 25 iterations surface 

roughness values has very low rate of change and after 150 iterations it hardly changes. 

The necessary equations for doing these calculations are available in particle swarm 

optimization procedure. Finally, the program plots for the final results and output values 

can be seen as shown in Figure 5.8 onwards. Time taken by the PSO program is 

approximately 4-5 minutes, which is convenient considering how long it takes to 

converge for the PSO for other applications. It can be considered that the PSO program 

used for this study is efficient when it comes to time taken for calculations. 

 

Table 5.1 Representing the values of characteristic constant [45, 46] 

 

Characteristic 

constants 

C1 C2 Epsilon 

Value 1.49445 1.49445 0.00009 
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Figure 5.6 Minimum surface roughness vs. trials or number of iterations 

 

 

 Values used in Table 5.1 are as follows, C1 is cognition learning rate, C2 is social 

learning rate and epsilon is the cutoff value or termination criteria for the PSO program. 

The learning rate is used as 1.49445 as it is recommended for obtaining better results by 

author of the method [53]. 

 

 

5.3.2 Optimization Results 

 The optimization program generates the positions of the particles for every 

iteration until the stopping criteria are satisfied. During these iterations particles change 

their positions within the workspace that is limited by the constrains. New positions are 

calculated using the available set of formulae. With every iteration movement of the 

particles becomes oriented towards the optimum positions. The change in positions and 

orientations can be observed in the Figures 5.8 onwards. Graphs represent the positions 

of the particles at the start, middle and end of the iterations. 
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Figure 5.7 Initial positions of particles (First Iteration) 

 

Figure 5.8 Particles travel path in the middle of the process (Iteration 25) 
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Figure 5.9 Particles travel path in the middle of the process (Iteration 55) 

 

 

 

 

Figure 5.10 Final positions of the particles (Iteration 125) 
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middle of process for calculation of optimization point, the program reached local 

minimum, since PSO technique is capable of handling such circumstances program could 

calculate further until global minimum is reached. Similarly while studying the effects of 

speed on surface roughness surface roughness quality actually observed to been reduced, 

especially within the range of 170 m/min to 195 m/min. Results obtained from the code 

based on PSO algorithm are mentioned below in the results table. The code stops 

working when all the stopping conditions are satisfied. The corresponding parameters at 

that point are optimum cutting parameter for achieving minimum surface roughness. 

Along with the surface roughness, resultant cutting force with optimum cutting 

parameters is also determined so as to make sure it does not crosses the maximum force 

bearing capacity of the cutting tool.  

  

 

Table 5.2 Optimum cutting conditions for corresponding objectives 

 

Cutting Parameter  Corresponding Optimum Value 

Feed Rate (mm/rev) 0.1533 

Speed (m/min) 176.6065 

Depth of cut (mm) 0.8178 

 

 

Table 5.3 Minimum values of characteristics attained 

 

Resultant Parameters Corresponding Minimum Value 

Surface Roughness  ܴ௔ (μm) 0.8357 

Resultant Cutting Force  ௙ܴ  (N) 631.5206 
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5.4 Extended Optimization Model for Turning Procedure  

 While choosing the cutting parameters for turning process, process constraints 

have to be considered. In some cases, constraints are more right e.g. diameter of the work 

piece, specific choice of depth of cut etc. It could be possible that sometimes selection of 

depth of cut is not the choice of the operator but the process constraint. Constraint of 

selection of depth of cut value is mostly seen during finishing operation or when there are 

tighter manufacturing tolerances. Considering the tool manufacturer’s recommendations 

or material properties such as chip formation it is mandatory to follow these limitations 

for safety. To make the optimization model compatible for these conditions, we have 

chosen to extend the scope of process constraints to selection of specific depth of cut. 

PSO procedure is used for this extension of model. Constrains regarding feed and speed 

are kept similar to that of previous optimization exercise i.e.   

 

 0.127 < Feed Rate (mm/rev) < 0.5588   

 104 < Speed (m/min) < 305 

 

 In previous optimization model, the solution space was three dimensional, 

whereas for extended model it is 2 dimensional since depth of cut is now a constraint 

input by a user, for trial purposes we used depth of cut equal to 0.75 mm. Extended 

model can also be used to cross check validity of the results of three dimension 

optimization model optimization model and vice-a-versa. Code for extended optimization 

model consists similar set of equations as that of mentioned above for calculating the 

positions, velocities, particle best and global best values. Following Figure is the graph of 

the surface roughness values obtained from each iteration of two dimensional 

optimization model.  
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Figure 5.12 Change in the values of surface roughness with progressing iteration 

 

  

Major change in the values occurs among iteration 5 to iteration 20, iteration 21 

onwards, program continues until all the stopping criteria are satisfied, iteration 76 is the 

last iteration. At this point, the model concludes to have found optimum position. During 

this procedure, particles keep changing their position depending upon, history of particle 

path, and, latest calculations for optimum position. Resulting particle positions are 

displayed in the graphs below. First graph shows particle positions for the very first 

iterations, second shows position of the particles when the optimization calculations are 

in progress, and, last graph showing the particle path merging at the optimum position.  

Particles are scattered at first, then they reorient themselves in order to search for the 

optimum position. 
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Figure 5.13 Particle positions during start of optimization procedure (Iteration 1) 

 

 

 
 

Figure 5.14 Particle position during middle of the optimization procedure (Iteration 15) 
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Figure 5.15 particle positions close to end of iterations (Iteration 50) 

 

 Values of spindle speed and feed rate for respective iterations are plotted so as to 

have clear understanding about their effect on surface roughness. It is very clear from the 

graphs that lower values of surface roughness can be achieved with lower values of the 

feed rate, especially within the range of 0.155 mm/rev up to 0.165 mm/rev. Spindle speed 

has similar effect on surface roughness. As spindle speed increases up to 170 m/min 

surface roughness values are observed to be very low which is acceptable and feasible. 
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Figure 5.16 Effect of feed, speed on surface roughness 

 

 Multiple values of depth of cut are used to find out the optimum values of other 

parameters. Following table depicts the result of these trials for achieving minimum 

surface roughness and corresponding resultant force.   

 

Table 5.4 Optimum cutting parameter values obtained from different depth of cut values 
 

 Optimum 

Parameter Value  

  

Depth of 

cut (mm) 

Feed                

(mm/rev) 

Speed          

(m/min) 

Surface 

Roughness(μm) 

Resultant 

Force(N) 

0.65 0.1686 171.4845 0.8950 493.3968 

0.75 0.1592 174.2946 0.8404 581.9895 

0.85 0.1495 175.5681 0.8437 656.5289 

0.95 0.1270 183.9613 0.9194 697.5184 

1.5 0.1792 304.9819 1.5926 1228 
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 These values confirm that the optimum values of control parameters to ensure 

minimum surface roughness and resultant force for given choice of depth of cut are 

correct. For value of depth of cut which was considered to be its optimum, in three 

dimensional optimization process i.e. when depth of cut is not a constraint, when used for 

two dimensional optimization process, values obtained for other two control parameters 

are in proximity.  This ensures the optimization model to be useful even when limitations 

such as depth of cut is presented because process or material or manufacturing 

constraints. 

 

 Generally the surface roughness requirements are characterized according to the 

type of application the manufactured part is going to be used for e.g. aerospace, health 

care, automobile, medical industry (especially for medial operations) needs surface 

quality to be very fine, whereas for welding process, parts that are out of reach for 

operator etc.  do not have high standards when it comes to surface quality. Predicted 

optimum values from either three input parameters model or two input parameter model 

are between 0.65 to 0.85 microns. These values for surface roughness are well within the 

acceptable range in the industry. 
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6. CONCLUSIONS AND FUTURE RESEARCH 

 

 

6.1 Conclusions 

Considering the increasing need to use turning process in manufacturing industry, 

existing advanced manufacturing systems have not done so well, when it comes to 

providing optimum solutions. Existing systems have contributed in process planning. 

Considering the multidimensional nature of the turning process, input and output process 

parameters have highly non-linear relationship. Analytical and mathematical alternatives 

were presented so as to simulate the process in order to understand nature of relationship 

between the input and the output process parameters. These approaches had very limited 

applicability due to its limitations, and, their generalization characteristics were very 

limited. However, Artificial Intelligence techniques have shown promising characteristics 

in spite of being expensive. In this thesis, Artificial Neural Network, which is Artificial 

Intelligence technique, is utilized. This thesis deals with effective simulation of turning 

process and machining parameter optimization. Accomplishments are summarized as 

follows. 

 An Artificial Neural Network technique is used to simulate accurate and generic 

model of turning process. This model is successfully implementation of ANN model 

is carried out. The ANN modeling technique is more accurate as compared to any 

other modeling technique used so far. This model was successfully trained to 

predict/estimate the desired outputs. Generalization characteristics of this technique 

are better than other alternative techniques used before. This technique, can be used 

not only to simulate turning process, but also other manufacturing process.  

 Matlab Neural Network tool box is used in order to simulate the turning process, 

which would be very useful to the machine operator for selection of process 

parameters.  
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 Feed forward back propagation type of Neural Network was found useful in modeling 

turning process because, its ability to predict the process outputs for data it has never 

seen before. It is very efficient NN model type. Specialty of Back propagation 

technique is that, when an error is detected between predicted and actual values, it can 

be traced back to the processing elements responsible for it, and correction can be 

made. It has very good generalization capabilities. It is proved to be very useful while 

using NN model along with optimization algorithm for calculations of optimum 

machining characteristics. 

 Statistical Design of Experiments proved to be an effective method, to reduce the 

amount of required training data for the model to learn to predict accurately. DOE 

approach reduces experimentation cost and time as only fraction of the data is 

sufficient for modeling the process. Selection of four levels of machining 

parameters/control factors was sufficient information for training of ANN model. 

Orthogonal Arrays were implemented successfully.   

 Since the data used for training the ANN model was recorded from actual 

experimentation, the ANN model takes into account static effects of the process. For 

validation of performance of ANN model, real time data was utilized, choosing 

randomly from the available recorded readings. Predicted results were in agreement 

with actual results, which support our claim of accurate modeling of the process.  

 Objective function used for optimization task, utilizes ANN model to predict the 

outcomes of the turning process i.e. surface roughness and resultant cutting force. 

Particle Swarm Optimization algorithm was used for calculations of optimum input 

parameter values for the turning process in order to minimize the surface roughness 

and resultant cutting force. Effectiveness of this procedure is demonstrated by its 

comparison with extended model for optimization process using similar objective 

function but more constraints. 

 The proposed methodology can also be used for many other machining processes as it 

allows the user to evaluate multidimensional scenario, and helps to predict most 

efficient set of process parameters with sufficient accuracy. 
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 Results obtained from optimization exercise have more benefits as that if from 

recommendations from material data handbook. 

 

 

6.2 Future Research 

 Even though, the ANN model paired along with PSO technique provides 

satisfactory results, number of advancements could be done to the ANN model in order to 

improve its abilities for proposed objective. 

 The performance of the ANN model for turning process simulation could further be 

improved by including additional machining related variables as control factors. This 

would increase the accuracy and predictability of the model significantly. In fact, 

parameters such as vibrations of the tool, temperature of the cutting surface would 

contribute greatly towards improving the generalization ability of the model. Also 

more factors can be introduced to measure the performance of the process, such as, 

geometric tolerance, chip thickness etc.  

 A comprehensive Taguchi method could be used to analyze the available data while 

reducing the effect of the noise factors involved in turning operation. This would 

improve the overall efficiency of the model as well as the understanding of this 

important machining operation. 

 For further improvement in the model, surface roughness can be considered as a 

constraint and the objective function can be chosen to minimize time. 
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Appendix A 

 

 

A.1 Figure Experimental Setup 

 

 

 

 

 

 

 

 

 

 



 93

A.2 Figure of surface roughness 
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A.3 Matlab GUI interface 
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Appendix B 

 

 

Data used for ANN model training 

B.1 Data obtained by using TNMG160408FF Insert (Total 64 Experiments). 

V 
[m/min] 

f 
[mm/rev] 

a 
[mm] Fr [N] 

Ra 
[mic] 

104 0.127 0.254 243.2984 1.535 
149 0.127 0.254 245.3579 1.53 
211 0.127 0.254 247.1539 1.6 
305 0.127 0.254 260.0561 1.46 
104 0.1778 0.254 297.8278 1.505 
149 0.1778 0.254 290.2299 1.11 
211 0.1778 0.254 263.4923 1.205 
305 0.1778 0.254 294.5171 1.105 
104 0.381 0.254 434.7561 5.805 
149 0.381 0.254 402.1734 6.185 
211 0.381 0.254 376.5565 6.375 
305 0.381 0.254 389.3196 6.08 
104 0.5588 0.254 400.6619 13.195 
149 0.5588 0.254 388.8305 13.015 
211 0.5588 0.254 516.9701 11.84 
305 0.5588 0.254 452.4397 10.75 
104 0.127 0.762 723.0048 1.34 
149 0.127 0.762 698.1973 0.94 
211 0.127 0.762 484.0585 0.8 
305 0.127 0.762 565.3121 0.88 
104 0.1778 0.762 989.4154 0.86 
149 0.1778 0.762 570.9566 1.505 
211 0.1778 0.762 658.3087 1.45 
305 0.1778 0.762 658.3087 1.45 
104 0.381 0.762 717.9953 6.045 
149 0.381 0.762 678.1831 6.09 
211 0.381 0.762 698.0793 6.07 
305 0.381 0.762 878.6915 6.005 
104 0.5588 0.762 1130.169 10.415 
149 0.5588 0.762 899.7007 11.48 
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211 0.5588 0.762 1061.591 11.99 
305 0.5588 0.762 1024.9 12.29 
104 0.127 1.27 648.7546 2.05 
149 0.127 1.27 617.1317 1.08 
211 0.127 1.27 864.9301 1.21 
305 0.127 1.27 887.4968 1.04 
104 0.1778 1.27 849.6834 1.635 
149 0.1778 1.27 867.0112 1.465 
211 0.1778 1.27 837.5391 1.43 
305 0.1778 1.27 817.9469 1.59 
104 0.381 1.27 1536.711 5.965 
149 0.381 1.27 1514.56 6.065 
211 0.381 1.27 1436.408 6.09 
305 0.381 1.27 1359.68 6.09 
104 0.5588 1.27 2309.101 8.04 
149 0.5588 1.27 2293.674 8.5 
211 0.5588 1.27 1910.68 8.715 
305 0.5588 1.27 2126.174 8.76 
104 0.127 1.778 975.4165 1.815 
149 0.127 1.778 916.5075 1.05 
211 0.127 1.778 858.7402 0.88 
305 0.127 1.778 841.8924 0.915 
104 0.1778 1.778 1384.94 1.825 
149 0.1778 1.778 1232.859 1.845 
211 0.1778 1.778 1193.418 1.83 
305 0.1778 1.778 1362.437 1.81 
104 0.381 1.778 2317.2 6.08 
149 0.381 1.778 2234.191 5.845 
211 0.381 1.778 2106.505 5.62 
305 0.381 1.778 2100.3 5.755 
104 0.5588 1.778 2515.127 10.745 
149 0.5588 1.778 2493.63 10.685 
211 0.5588 1.778 2393.944 10.735 
305 0.5588 1.778 2360.337 10.825 
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B.2 Data obtained by using T TNMG160408FN Insert (Total 64 Experiments). 

V 
[m/min] 

f 
[mm/rev] a [mm] Fr [N] 

Ra 
[mic] 

104 0.127 0.254 176.4976 0.915 
149 0.127 0.254 184.06 0.905 
211 0.127 0.254 203.6922 1.02 
305 0.127 0.254 208.8404 1.005 
104 0.1778 0.254 225.1976 1.325 
149 0.1778 0.254 225.0013 1.455 
211 0.1778 0.254 229.2697 1.385 
305 0.1778 0.254 232.3822 1.365 
104 0.381 0.254 251.4133 6.365 
149 0.381 0.254 231.81 6.255 
211 0.381 0.254 233.1164 6.185 
305 0.381 0.254 237.0063 6.355 
104 0.5588 0.254 418.8359 10.835 
149 0.5588 0.254 417.2522 10.675 
211 0.5588 0.254 456.064 10.875 
305 0.5588 0.254 498.6787 10.775 
104 0.127 0.762 404.1575 1.05 
149 0.127 0.762 371.813 1.265 
211 0.127 0.762 376.433 1.305 
305 0.127 0.762 389.4393 1.285 
104 0.1778 0.762 471.3972 1.575 
149 0.1778 0.762 455.9982 1.605 
211 0.1778 0.762 449.765 1.745 
305 0.1778 0.762 446.5688 1.76 
104 0.381 0.762 475.3344 5.985 
149 0.381 0.762 765.6536 5.955 
211 0.381 0.762 751.8645 6.035 
305 0.381 0.762 751.3596 6.185 
104 0.5588 0.762 1131.43 9.615 
149 0.5588 0.762 1157.544 9.69 
211 0.5588 0.762 1116.691 9.775 
305 0.5588 0.762 1070.133 10.32 
104 0.127 1.27 563.5931 1.055 
149 0.127 1.27 544.8958 0.995 
211 0.127 1.27 547.8406 1.025 
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305 0.127 1.27 542.352 1.03 
104 0.1778 1.27 759.1936 1.635 
149 0.1778 1.27 756.3223 1.54 
211 0.1778 1.27 764.7327 1.58 
305 0.1778 1.27 762.0848 1.58 
104 0.381 1.27 1240.515 6.295 
149 0.381 1.27 1198.06 6.22 
211 0.381 1.27 1136.2 6.235 
305 0.381 1.27 1155.712 6.265 
104 0.5588 1.27 1885.155 13.13 
149 0.5588 1.27 1770.551 12.93 
211 0.5588 1.27 1739.753 14.715 
305 0.5588 1.27 1720.182 13.275 
104 0.127 1.778 826.1699 1.285 
149 0.127 1.778 860.3836 1.48 
211 0.127 1.778 804.7218 1.54 
305 0.127 1.778 812.6658 1.245 
104 0.1778 1.778 1034.456 1.83 
149 0.1778 1.778 1004.354 1.7 
211 0.1778 1.778 1009.088 1.74 
305 0.1778 1.778 992.9036 1.815 
104 0.381 1.778 2031.139 5.89 
149 0.381 1.778 2086.126 5.95 
211 0.381 1.778 2004.061 6.045 
305 0.381 1.778 2028.425 6.125 
104 0.5588 1.778 2234.978 10.635 
149 0.5588 1.778 2124.658 10.68 
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B.3 Data obtained by using TNMG160408MN Insert (Total 64 Experiments). 

 

V 
[m/min] 

f 
[mm/rev] 

a 
[mm] Fr [N] 

Ra 
[mic] 

104 0.127 0.254 232.7851 0.98 
149 0.127 0.254 215.0054 0.99 
211 0.127 0.254 204.5181 1.14 
305 0.127 0.254 205.1765 1.215 
104 0.1778 0.254 261.7645 1.61 
149 0.1778 0.254 256.9448 1.74 
211 0.1778 0.254 261.3797 1.785 
305 0.1778 0.254 273.4742 1.905 
104 0.381 0.254 492.0043 6.075 
149 0.381 0.254 486.4665 6.035 
211 0.381 0.254 493.4933 5.995 
305 0.381 0.254 503.1991 6.12 
104 0.5588 0.254 580.1256 10.555 
149 0.5588 0.254 557.9881 10.66 
211 0.5588 0.254 551.404 10.795 
305 0.5588 0.254 554.0336 10.645 
104 0.127 0.762 476.6533 0.77 
149 0.127 0.762 482.983 0.92 
211 0.127 0.762 492.4869 0.89 
305 0.127 0.762 494.4332 0.915 
104 0.1778 0.762 718.1974 1.44 
149 0.1778 0.762 617.4347 1.16 
211 0.1778 0.762 602.948 1.17 
305 0.1778 0.762 607.0305 1.195 
104 0.381 0.762 1116.749 6.005 
149 0.381 0.762 725.3309 2.82 
211 0.381 0.762 831.7228 3.065 
305 0.381 0.762 889.9171 2.985 
104 0.5588 0.762 1247.143 13.69 
149 0.5588 0.762 1391.601 10.845 
211 0.5588 0.762 1384.344 10.66 
305 0.5588 0.762 1415.657 10.66 
104 0.127 1.27 727.0507 2.905 
149 0.127 1.27 735.0775 2.005 
211 0.127 1.27 740.0475 1.4 
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305 0.127 1.27 582.5965 0.94 
104 0.1778 1.27 714.9104 1.525 
149 0.1778 1.27 849.5926 1.5 
211 0.1778 1.27 873.2018 1.53 
305 0.1778 1.27 833.6926 1.53 
104 0.381 1.27 1038.294 5.985 
149 0.381 1.27 1349.799 5.975 
211 0.381 1.27 1348.344 6.09 
305 0.381 1.27 1357.224 6.03 
104 0.5588 1.27 1502.186 10.69 
149 0.5588 1.27 1823.172 10.685 
211 0.5588 1.27 1864.331 10.605 
305 0.5588 1.27 1897.419 10.515 
104 0.127 1.778 824.2799 1.325 
149 0.127 1.778 960.7853 1.265 
211 0.127 1.778 973.0137 1.07 
305 0.127 1.778 1063.346 1.155 
104 0.1778 1.778 1333.019 1.545 
149 0.1778 1.778 1079.412 1.89 
211 0.1778 1.778 1068.126 1.79 
305 0.1778 1.778 1078.206 1.845 
104 0.381 1.778 2290.555 6.08 
149 0.381 1.778 1872.895 6.22 
211 0.381 1.778 1918.959 6.365 
305 0.381 1.778 1846.432 6.555 
104 0.5588 1.778 2299.973 13.46 
149 0.5588 1.778 2247.833 10.775 
211 0.5588 1.778 2255.602 10.92 
305 0.5588 1.778 2273.899 10.76 
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B.4 Data obtained by using TNMG160408RN Insert (Total 64 Experiments). 

 

V 
[m/min] f [mm/rev] a [mm] Fr [N] Ra [mic] 

104 0.127 0.254 256.4234 7.115 
149 0.127 0.254 249.425 2.915 
211 0.127 0.254 258.9729 1.285 
305 0.127 0.254 269.3727 0.965 
104 0.1778 0.254 301.9586 1.705 
149 0.1778 0.254 295.774 1.705 
211 0.1778 0.254 299.2893 1.705 
305 0.1778 0.254 327.1704 1.595 
104 0.381 0.254 454.6752 5.85 
149 0.381 0.254 474.9194 6.09 
211 0.381 0.254 475.0501 6.01 
305 0.381 0.254 337.5326 5.655 
104 0.5588 0.254 462.484 10.29 
149 0.5588 0.254 448.6837 10.775 
211 0.5588 0.254 419.4318 10.745 
305 0.5588 0.254 322.1354 5.92 
104 0.127 0.762 518.614 1.1 
149 0.127 0.762 535.4864 1.27 
211 0.127 0.762 519.0662 0.975 
305 0.127 0.762 560.2053 2.995 
104 0.1778 0.762 639.1152 1.765 
149 0.1778 0.762 563.2618 1.755 
211 0.1778 0.762 562.941 1.74 
305 0.1778 0.762 584.2943 1.685 
104 0.381 0.762 1096.362 6.095 
149 0.381 0.762 969.197 6 
211 0.381 0.762 946.4824 6.15 
305 0.381 0.762 928.4021 6.085 
104 0.5588 0.762 1198.476 12.8 
149 0.5588 0.762 1536.67 12.7 
211 0.5588 0.762 1479.314 12.625 
305 0.5588 0.762 1550.05 9.68 
104 0.127 1.27 678.2507 1.425 
149 0.127 1.27 658.8935 1.345 
211 0.127 1.27 670.5301 1.19 
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305 0.127 1.27 675.5719 1.265 
104 0.1778 1.27 878.3353 2.2 
149 0.1778 1.27 876.6171 1.36 
211 0.1778 1.27 874.7851 1.44 
305 0.1778 1.27 823.9774 2.01 
104 0.381 1.27 1411.397 5.865 
149 0.381 1.27 1395.535 5.935 
211 0.381 1.27 1276.464 6.085 
305 0.381 1.27 1137.226 6.005 
104 0.5588 1.27 1626.739 10.465 
149 0.5588 1.27 1861.853 10.53 
211 0.5588 1.27 1786.142 10.525 
305 0.5588 1.27 1741.143 11.57 
104 0.127 1.778 701.5861 1.355 
149 0.127 1.778 685.5452 2.89 
211 0.127 1.778 692.527 2.335 
305 0.127 1.778 648.3117 0.91 
104 0.1778 1.778 943.2886 1.665 
149 0.1778 1.778 916.0447 1.55 
211 0.1778 1.778 500.327 1.565 
305 0.1778 1.778 886.1075 1.705 
104 0.381 1.778 1408.485 6.215 
149 0.381 1.778 1356.748 6.11 
211 0.381 1.778 1314.332 6.215 
305 0.381 1.778 1328.579 5.96 
104 0.5588 1.778 2219.637 10.595 
149 0.5588 1.778 2139.528 10.7 
211 0.5588 1.778 2024.766 10.805 
305 0.5588 1.778 1873.86 12.77 
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B.5 Data obtained by using TNMG160408RP Insert (Total 64 Experiments). 

 

V [m/min] f [mm/rev] a [mm] Fr Ra [mic] 
104 0.127 0.254 198.2213 1.875 
149 0.127 0.254 541.6884 1.475 
211 0.127 0.254 546.8546 1.71 
305 0.127 0.254 545.1861 1.415 
104 0.1778 0.254 871.2861 1.7 
149 0.1778 0.254 850.0405 1.685 
211 0.1778 0.254 933.9917 1.665 
305 0.1778 0.254 940.2587 1.655 
104 0.381 0.254 307.3643 5.95 
149 0.381 0.254 299.1693 5.86 
211 0.381 0.254 272.8894 5.865 
305 0.381 0.254 263.985 5.73 
104 0.5588 0.254 361.1175 10.655 
149 0.5588 0.254 349.8009 10.105 
211 0.5588 0.254 362.9384 12.74 
305 0.5588 0.254 388.2512 12.875 
104 0.127 0.762 459.3533 1.145 
149 0.127 0.762 449.0858 1.53 
211 0.127 0.762 453.1013 1.385 
305 0.127 0.762 475.3982 1.25 
104 0.1778 0.762 576.0125 1.975 
149 0.1778 0.762 549.3174 1.985 
211 0.1778 0.762 514.177 1.6 
305 0.1778 0.762 529.216 1.48 
104 0.381 0.762 899.3617 6.71 
149 0.381 0.762 829.4624 6.715 
211 0.381 0.762 810.264 6.86 
305 0.381 0.762 825.3543 6.535 
104 0.5588 0.762 1226.68 13.07 
149 0.5588 0.762 1200.747 12.075 
211 0.5588 0.762 1131.292 12.015 
305 0.5588 0.762 1201.543 11.83 
104 0.127 1.27 738.8621 4.33 
149 0.127 1.27 696.7606 4.855 
211 0.127 1.27 697.0091 3.69 
305 0.127 1.27 682.3967 5 
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104 0.1778 1.27 886.6719 1.815 
149 0.1778 1.27 855.2141 1.8 
211 0.1778 1.27 872.3791 1.82 
305 0.1778 1.27 873.4873 2.265 
104 0.381 1.27 1405.721 6.445 
149 0.381 1.27 1354.527 6.1 
211 0.381 1.27 1335.515 5.985 
305 0.381 1.27 1347.431 6.01 
104 0.5588 1.27 1736.427 10.61 
149 0.5588 1.27 1680.138 10.48 
211 0.5588 1.27 1642.456 10.12 
305 0.5588 1.27 1287.062 10.725 
104 0.127 1.778 893.3393 1.4 
149 0.127 1.778 869.5298 1.045 
211 0.127 1.778 835.6484 1.07 
305 0.127 1.778 826.5578 0.875 
104 0.1778 1.778 1127.843 1.67 
149 0.1778 1.778 1060.842 1.7 
211 0.1778 1.778 1068.542 1.62 
305 0.1778 1.778 1156.235 1.63 
104 0.381 1.778 1918.044 5.845 
149 0.381 1.778 1810.85 5.995 
211 0.381 1.778 1741.729 6.055 
305 0.381 1.778 1793.464 6.13 
104 0.5588 1.778 2259.596 10.425 
149 0.5588 1.778 2210.421 10.435 
211 0.5588 1.778 2074.712 10.285 
305 0.5588 1.778 2115.9 12.91 
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Appendix C 
 
 

C.1 Constraint test for PSO code 
 
function unfeas=Constraint_test(feed,spd,DOC,net) 
unfeas=1; 
if feed < 0.127 || feed > 0.5588 
    unfeas=0; 
    return 
end 
if spd < 104 || spd > 305 
    unfeas=0; 
    return 
end 
if DOC < 0.254 || DOC > 1.778 
    unfeas=0; 
    return 
end 
temp=sim(net,[feed spd DOC]'); 
Force=temp(2); 
if Force >= 2515.127 || Force < 0 
    unfeas=0; 
    return 
end 
end 
 

 

C.2 PSO code for three dimensional optimization model for turning  

%Initialization of PSO parameters 
%wmax=0.9; % Max weights used in PSO Eqn 
%wmin=0.4; % Min weights used in PSO Eqn 
%itmax=50; %Maximum iteration number 
% Input: Feed, Speed, DOC(Depth of Cut) 
% Output: Cutting force, Surface Rough 
clear all 
clc 
load myNet 
%net=network1; 
c1=1.49445; 
c2=1.49445; 
epslon=0.00009; 
  
correct(1)=1; 
%T_dmd=55; 
%W_dmd=300; 
%Prev_SOC=0.98; 
%Forming an array of weights which would be used during iteration and 
%distributing  it equally according to the iteration numbers just as an 
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%line so that weights are changing at fixed rate during entire 
iteration 
  
%for iter=1:itmax 
%W(iter)=wmax-((wmax-wmin)/itmax)*iter;  
%end 
  
%********************************************************** 
  
%Initialization of positions of agents 
% agents are initialized between -5,+5 randomly 
a_feed=0.127;   
b_feed=0.5588; 
a_spd=104; 
b_spd=305; 
a_DOC=0.254; 
b_DOC=1.778; 
N=20; % The number of particles 
D=3;  % The dimension of the space of the particles 
  
  
  
for init_i=1:N 
    x(init_i,1)=a_feed+(b_feed-a_feed)*rand(1,1,1); %feed 
    x(init_i,2)=a_spd+(b_spd-a_spd)*rand(1,1,1); %spd 
    x(init_i,3)=a_DOC+(b_DOC-a_DOC)*rand(1,1,1); %DOC 
end 
%Initialization of velocities of agents 
%Between -5 , +5, (which can also be started from zero) 
  
m=0; 
n=1; 
V(:,1)=m+(n-m)*rand(N,1,1); 
V(:,2)=m+(n-m)*rand(N,1,1); 
V(:,3)=m+(n-m)*rand(N,1,1); 
%Evaluating the Objective function for each particle using its position 
for i=1:N; 
    temp = sim(net,[x(i,2) x(i,1) x(i,3)]'); 
    F(i,1,1) =temp(1);     
%     
F(i,1,1)=Objective_function(x(i,1,1),x(i,2,1),T_dmd,W_dmd,Prev_SOC); 
end 
  
%********************************************************** 
%Obtaining the first minimum of all the randomly defined particles 
  
[C,I]=min((F(:,1,1)));   % To identify minimum in that group" C" and 
its position in that column" I" 
  
B(1,1,1)=C;  % Value of Global min for that iteration 
XX(1,1,1)=I; % store corresponding inputs of respective global minimum 
  
%Storing that position values in the gbest array 
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gbest(1,1,1)=x(I,1,1); 
gbest(1,2,1)=x(I,2,1); 
gbest(1,3,1)=x(I,3,1); 
  
%******************************************************** 
%Matrix composed of gbest vector  
  
%Assinging the global best position value to each particle in its own 
%storing location provided by array G 
for p=1:N 
    for r=1:D   
        G(p,r,1)=gbest(1,r,1); 
    end 
end 
  
%%%Finding the obj value corresponding to the gbest 
temp = sim(net,[G(1,2,1) G(1,1,1) G(1,3,1)]'); 
Fbest(1,1,1)=temp(1); 
% 
Fbest(1,1,1)=Objective_function(G(1,1,1),G(1,2,1),T_dmd,W_dmd,Prev_SOC)
; 
  
%Initializing pbest variable for all the particles  which is the 
particles 
%best position 
  for i=1:N; 
       pbest(i,:,1)=x(i,:,1); 
  end 
   
W(1)=0.5+(rand(1)/2); 
     
%The new velocities of all the particles 
V(:,:,2)=W(1)*V(:,:,1)+c1*rand*(pbest(:,:,1)-
x(:,:,1))+c2*rand*(G(:,:,1)-x(:,:,1)); 
  
%The new positions of all the particles 
x(:,:,2)=x(:,:,1)+V(:,:,2); 
  
% 
temp=Objective_function(gbest(1,1,1),gbest(1,2,1),T_dmd,W_dmd,Prev_SOC)
; 
temp = sim(net,[gbest(1,2,1) gbest(1,1,1) gbest(1,3,1)]'); 
Fb(1,1,1)=temp(1); 
%sim('PSO_Code_Lookupsim_3',[0,0.001]) 
%Fb(1,1,1)=temp_3; 
%**********************************************************************
**** 
%**********************************************************************
**** 
%The main loop for the Optimization STARTING 
%**********************************************************************
**** 
%**********************************************************************
**** 
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j=2; 
  
  
ending=0; 
while ending==0 
    
W(j)=0.5+(rand(1)/2);  
% Calculation of new positions 
  
%Finding the new objective function values for all these new positions 
of the particles     
for i=1:N; 
    temp = sim(net,[x(i,2,j) x(i,1,j) x(i,3,j)]'); 
    F(i,1,j)=temp(1); 
    % 
F(i,1,j)=Objective_function(x(i,1,j),x(i,2,j),T_dmd,W_dmd,Prev_SOC); 
end 
  
% Finding the minimum value for all the particles 
%  [C,I]=min(abs(F(:,:,j))); %%CONSTRAINED PROBLEM CHANGES HERE 
%  B(1,1,j)=C; 
%  XX(1,1,j)=I; 
% gbest(1,1,1)=x(I,1,1); 
% gbest(1,2,1)=x(I,2,1); 
% gbest(1,3,1)=x(I,3,1); 
% 
%**********************************************************************
**** 
%Constrained part modification for Feasibility Starts 
% 
%**********************************************************************
**** 
[F_g_sort,sort_g_index]=sort(F(:,1,j)); 
Feas_g=0; 
i_unconst_g=1; 
while Feas_g==0 andand i_unconst_g<=N 
    
Feas_g=Constraint_test(x(sort_g_index(i_unconst_g),1,j),x(sort_g_index(
i_unconst_g),2,j), x(sort_g_index(i_unconst_g),3,j),net); 
    i_unconst_g=i_unconst_g+1; 
end 
if i_unconst_g==j+1 || Feas_g==0 
    C=Fbest(1,1,j-1); 
    B(1,1,j)=C; 
    gbest(1,1,j)=G(1,1,j-1); 
    gbest(1,2,j)=G(1,2,j-1); 
    gbest(1,3,j)=G(1,3,j-1); 
else 
    C=F(sort_g_index(i_unconst_g-1),1,j); 
    I=sort_g_index(i_unconst_g-1);     
   %Saving the best minimum value of objective function in an array for 
record 
    B(1,1,j)=C; 
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%Defining the new global best position afther this iteration which is 
used 
%for new iteration 
    gbest(1,1,j)=x(I,1,j); 
    gbest(1,2,j)=x(I,2,j); 
    gbest(1,3,j)=x(I,3,j); 
end 
% 
%**********************************************************************
**** 
% %Constrained part modification for Feasibility ends 
% 
%**********************************************************************
**** 
% %Finding the best objective function value corresponding to this new 
global best 
temp = sim(net,[gbest(1,2,j) gbest(1,1,j) gbest(1,3,j)]'); 
Fb(1,1,j)=temp(1); 
% 
Fb(1,1,j)=Objective_function(gbest(1,1,j),gbest(1,2,j),T_dmd,W_dmd,Prev
_SOC); 
%Fb(1,1,j)=C; 
% %sim('PSO_Code_Lookupsim_5',[0,0.001]) 
% %Fb(1,1,j)=temp_5; 
%  
% %Comparing this new best objective function corresponding to global 
best 
% %with the previous best objective function values corresponding to 
other 
% %global bests 
%  
%  
[C,I]=min(Fb(1,1,:));   
  
%If the new Fb(1,1,j) (corresponding to new gbest) is less then or 
equal to 
%this C then update the gbest accordingly  
%(the less than and equal to sign might be used to sove the matlab 
accuracy problem) 
if Fb(1,1,j)<=C 
    gbest(1,1,j)=gbest(1,1,j); 
    gbest(1,2,j)=gbest(1,2,j); 
    gbest(1,3,j)=gbest(1,3,j); 
else 
    gbest(1,1,j)=gbest(1,1,I); 
    gbest(1,2,j)=gbest(1,2,I); 
    gbest(1,3,j)=gbest(1,3,I); 
end        
%Matrix composed of gbest vector  
%So now defining the new set of G variable corresponding to this 
iteration 
%and would be used to calculate the new velocities and positions 
for p=1:N 
    for r=1:D 
        G(p,r,j)=gbest(1,r,j); 
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    end 
end 
%Dont know why its defined becuase it is not used anywhere 
  
% 
Fbest(1,1,j)=Objective_function(G(1,1,j),G(1,2,j),T_dmd,W_dmd,Prev_SOC)
; 
temp = sim(net,[G(1,2,j) G(1,1,j) G(1,3,j)]'); 
Fbest(1,1,j)=temp(1); 
%sim('PSO_Code_Lookupsim_6',[0,0.001]) 
%Fbest(1,1,j)=temp_6; 
  
 %For each particle comparing the objective function value for its 
entire 
 %history and finding the particles best and then defining it 
accordingly 
 %so that it can be used in main optimization equations 
  for i=1:N; 
      %[C,I]=min(F(i,1,:)); %%CONSTRAINED PROBLEM CHANGES HERE 
%**********************************************************************
**** 
%Constrained part modification for Feasibility Starts 
%**********************************************************************
**** 
    [Fb_p_sort,sort_p_index]=sort(F(i,1,:)); 
    Feas_p=0; 
    i_unconst_p=1; 
    while Feas_p==0 andand i_unconst_p<=j 
       
Feas_p=Constraint_test(x(i,1,sort_p_index(i_unconst_p)),x(i,2,sort_p_in
dex(i_unconst_p)), x(i,3,sort_p_index(i_unconst_p)),net); 
       i_unconst_p=i_unconst_p+1; 
    end 
     
    if i_unconst_p==j+1 || Feas_p==0 
        pbest(i,:,j)=pbest(i,:,j-1); 
    else 
        %C=Objective_function(pbest(i,1,j-1),pbest(i,2,j-
1),T_dmd,W_dmd,Prev_SOC); 
        C=F(i,1,sort_p_index(i_unconst_p-1)); 
        I=sort_p_index(i_unconst_p-1);       
        if F(i,1,j)<=C andand i_unconst_p-1==1 
            pbest(i,:,j)=x(i,:,I);   
        else 
            pbest(i,:,j)=x(i,:,I); 
        end 
       end 
  end 
%**********************************************************************
**** 
%Constrained part modification for Feasibility ends 
%**********************************************************************
**** 
%**********************************************************************
**** 
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%Stopping Criterion Starting 
%**********************************************************************
****       
  l=1; 
  repeat=1; 
  while repeat ==1 
      if j-l>0 
          if abs(Fbest(:,:,j)-Fbest(:,:,j-l))<=epslon 
              if l<50 
                  l=l+1; 
                  repeat=1; 
              else 
                   Feed=gbest(:,1,j); 
                   Spd=gbest(:,2,j); 
                   DOC=gbest(:,3,j); 
                   ending=1; 
                   repeat=0; 
                   break 
              end 
          else 
              repeat=0; 
          end 
      else 
          repeat=0; 
      end 
  end 
   
  if ending==1 
      break 
  end 
  
%**********************************************************************
**** 
%Stopping Criterion Ending 
%**********************************************************************
****        
                      
flag=0; 
correct(j)=0; 
for i=1:N 
    if pbest(i,:,j)==gbest(:,:,j) 
        correct(j)=1; 
        flag=1; 
        break 
    end 
end 
  
         
%Calculating the Velocities for the next iteration using the main PSO 
%Equation 
V(:,:,j+1)=W(j)*V(:,:,j)+c1*rand*(pbest(:,:,j)-
x(:,:,j))+c2*rand*(G(:,:,j)-x(:,:,j)); 
  



 112

%Calculating the next positions of the particle corresponding to th 
above 
%newly found velocities. 
  
x(:,:,j+1)=x(:,:,j)+V(:,:,j+1); 
j=j+1; 
  
end 
Feed(1)=gbest(:,1,j-1) 
spd(1)=gbest(:,2,j-1) 
DOC(1)=gbest(:,3,j-1) 
temp=sim(net,[gbest(:,2,j-1) gbest(:,1,j-1) gbest(:,3,j-1)]'); 
Force(1)=temp(2); 
Opt_values=min(Fbest(1,1,j-1)) 
 
 

 

C.3 Code for plotting results for PSO 

for i=1:size(Fbest,3) 
    Surface_rough(i)=Fbest(:,:,i); 
    speed_plot(i)=gbest(1,2,i); 
    Feed_plot(i)=gbest(1,1,i); 
    DOC_plot(i)=gbest(1,3,i); 
end 
  
  
j=150; 
Figure(1) 
scatter3(x(:,2,j),x(:,1,j),x(:,3,j),500,'b','.') 
axis([104 305 0.127 0.5588 0.254 1.778]) 
grid on 
xlabel('speed') 
ylabel('Feed') 
zlabel('Depth of Cut') 
  
Figure(2) 
plot(Surface_rough) 
grid on 
xlabel('Trials') 
ylabel('Surface Roughness') 
  
Figure(3) 
plot(speed_plot,Surface_rough) 
grid on 
xlabel('Speed') 
ylabel('Surface Roughness') 
  
Figure(4) 
plot(Feed_plot,Surface_rough) 
grid on 
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xlabel('Feed') 
ylabel('Surface Roughness') 
  
Figure(5) 
plot(DOC_plot,Surface_rough) 
grid on 
xlabel('Depth of Cut') 
ylabel('Surface Roughness') 
 

 

C.4 PSO code for two dimensional optimization (depth of cut as added constraint) 

%Initialization of PSO parameters 
%wmax=0.9; % Max weights used in PSO Eqn 
%wmin=0.4; % Min weights used in PSO Eqn 
%itmax=50; %Maximum iteration number 
% Input: Feed, Speed, DOC(Depth of Cut) 
% Output: Cutting force, Surface Rough 
clear all 
clc 
load myNet 
%net=network1; 
c1=1.49445; 
c2=1.49445; 
epslon=0.00009; 
  
correct(1)=1; 
%T_dmd=55; 
%W_dmd=300; 
%Prev_SOC=0.98; 
%Forming an array of weights which would be used during iteration and 
%distributing  it equally according to the iteration numbers just as an 
%line so that weights are changing at fixed rate during entire 
iteration 
  
%for iter=1:itmax 
%W(iter)=wmax-((wmax-wmin)/itmax)*iter;  
%end 
  
%********************************************************** 
  
%Initialization of positions of agents 
% agents are initialized between -5,+5 randomly 
a_feed=0.127;   
b_feed=0.5588; 
a_spd=104; 
b_spd=305; 
a_DOC=0.254; 
b_DOC=0.254; 
N=20; % The number of particles 
D=2;  % The dimension of the space of the particles 
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DOC=0.75; 
  
  
  
for init_i=1:N 
    x(init_i,1)=a_feed+(b_feed-a_feed)*rand(1,1,1); %feed 
    x(init_i,2)=a_spd+(b_spd-a_spd)*rand(1,1,1); %spd 
 %   x(init_i,3)=a_DOC+(b_DOC-a_DOC)*rand(1,1,1); %DOC 
end 
%Initialization of velocities of agents 
%Between -5 , +5, (which can also be started from zero) 
  
m=0; 
n=1; 
V(:,1)=m+(n-m)*rand(N,1,1); 
V(:,2)=m+(n-m)*rand(N,1,1); 
%V(:,3)=m+(n-m)*rand(N,1,1); 
%Evaluating the Objective function for each particle using its position 
for i=1:N; 
    temp = sim(net,[x(i,2) x(i,1) DOC]'); 
    F(i,1,1) =temp(1);     
%     
F(i,1,1)=Objective_function(x(i,1,1),x(i,2,1),T_dmd,W_dmd,Prev_SOC); 
end 
  
%********************************************************** 
%Obtaining the first minimum of all the randomly defined particles 
  
[C,I]=min((F(:,1,1)));   % To identify minimum in that group" C" and 
its position in that column" I" 
  
B(1,1,1)=C;  % Value of Global min for that iteration 
XX(1,1,1)=I; % store corresponding inputs of respective global minimum 
  
%Storing that position values in the gbest array 
gbest(1,1,1)=x(I,1,1); 
gbest(1,2,1)=x(I,2,1); 
%gbest(1,3,1)=x(I,3,1); 
  
%******************************************************** 
%Matrix composed of gbest vector  
  
%Assinging the global best position value to each particle in its own 
%storing location provided by array G 
for p=1:N 
    for r=1:D   
        G(p,r,1)=gbest(1,r,1); 
    end 
end 
  
%%%Finding the obj value corresponding to the gbest 
temp = sim(net,[G(1,2,1) G(1,1,1) DOC]'); 
Fbest(1,1,1)=temp(1); 
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% 
Fbest(1,1,1)=Objective_function(G(1,1,1),G(1,2,1),T_dmd,W_dmd,Prev_SOC)
; 
  
%Initializing pbest variable for all the particles  which is the 
particles 
%best position 
  for i=1:N; 
       pbest(i,:,1)=x(i,:,1); 
  end 
   
W(1)=0.5+(rand(1)/2); 
     
%The new velocities of all the particles 
V(:,:,2)=W(1)*V(:,:,1)+c1*rand*(pbest(:,:,1)-
x(:,:,1))+c2*rand*(G(:,:,1)-x(:,:,1)); 
  
%The new positions of all the particles 
x(:,:,2)=x(:,:,1)+V(:,:,2); 
  
% 
temp=Objective_function(gbest(1,1,1),gbest(1,2,1),T_dmd,W_dmd,Prev_SOC)
; 
temp = sim(net,[gbest(1,2,1) gbest(1,1,1) DOC]'); 
Fb(1,1,1)=temp(1); 
%sim('PSO_Code_Lookupsim_3',[0,0.001]) 
%Fb(1,1,1)=temp_3; 
%**********************************************************************
**** 
%**********************************************************************
**** 
%The main loop for the Optimization STARTING 
%**********************************************************************
**** 
%**********************************************************************
**** 
j=2; 
  
  
ending=0; 
while ending==0 
    
W(j)=0.5+(rand(1)/2);  
% Calculation of new positions 
  
%Finding the new objective function values for all these new positions 
of the particles     
for i=1:N; 
    temp = sim(net,[x(i,2,j) x(i,1,j) DOC]'); 
    F(i,1,j)=temp(1); 
    % 
F(i,1,j)=Objective_function(x(i,1,j),x(i,2,j),T_dmd,W_dmd,Prev_SOC); 
end 
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% Finding the minimum value for all the particles 
%  [C,I]=min(abs(F(:,:,j))); %%CONSTRAINED PROBLEM CHANGES HERE 
%  B(1,1,j)=C; 
%  XX(1,1,j)=I; 
% gbest(1,1,1)=x(I,1,1); 
% gbest(1,2,1)=x(I,2,1); 
% gbest(1,3,1)=x(I,3,1); 
% 
%**********************************************************************
**** 
%Constrained part modification for Feasibility Starts 
% 
%**********************************************************************
**** 
[F_g_sort,sort_g_index]=sort(F(:,1,j)); 
Feas_g=0; 
i_unconst_g=1; 
while Feas_g==0 andand i_unconst_g<=N 
    
Feas_g=Constraint_test(x(sort_g_index(i_unconst_g),1,j),x(sort_g_index(
i_unconst_g),2,j), DOC,net); 
    i_unconst_g=i_unconst_g+1; 
end 
if i_unconst_g==j+1 || Feas_g==0 
    C=Fbest(1,1,j-1); 
    B(1,1,j)=C; 
    gbest(1,1,j)=G(1,1,j-1); 
    gbest(1,2,j)=G(1,2,j-1); 
   % gbest(1,3,j)=G(1,3,j-1); 
else 
    C=F(sort_g_index(i_unconst_g-1),1,j); 
    I=sort_g_index(i_unconst_g-1);     
   %Saving the best minimum value of objective function in an array for 
record 
    B(1,1,j)=C; 
%Defining the new global best position afther this iteration which is 
used 
%for new iteration 
    gbest(1,1,j)=x(I,1,j); 
    gbest(1,2,j)=x(I,2,j); 
  %  gbest(1,3,j)=x(I,3,j); 
end 
% 
%**********************************************************************
**** 
% %Constrained part modification for Feasibility ends 
% 
%**********************************************************************
**** 
% %Finding the best objective function value corresponding to this new 
global best 
temp = sim(net,[gbest(1,2,j) gbest(1,1,j) DOC]'); 
Fb(1,1,j)=temp(1); 
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% 
Fb(1,1,j)=Objective_function(gbest(1,1,j),gbest(1,2,j),T_dmd,W_dmd,Prev
_SOC); 
%Fb(1,1,j)=C; 
% %sim('PSO_Code_Lookupsim_5',[0,0.001]) 
% %Fb(1,1,j)=temp_5; 
%  
% %Comparing this new best objective function corresponding to global 
best 
% %with the previous best objective function values corresponding to 
other 
% %global bests 
%  
%  
[C,I]=min(Fb(1,1,:));   
  
%If the new Fb(1,1,j) (corresponding to new gbest) is less then or 
equal to 
%this C then update the gbest accordingly  
%(the less than and equal to sign might be used to sove the matlab 
accuracy problem) 
if Fb(1,1,j)<=C 
    gbest(1,1,j)=gbest(1,1,j); 
    gbest(1,2,j)=gbest(1,2,j); 
 %   gbest(1,3,j)=gbest(1,3,j); 
else 
    gbest(1,1,j)=gbest(1,1,I); 
    gbest(1,2,j)=gbest(1,2,I); 
%    gbest(1,3,j)=gbest(1,3,I); 
end        
%Matrix composed of gbest vector  
%So now defining the new set of G variable corresponding to this 
iteration 
%and would be used to calculate the new velocities and positions 
for p=1:N 
    for r=1:D 
        G(p,r,j)=gbest(1,r,j); 
    end 
end 
%Dont know why its defined becuase it is not used anywhere 
  
% 
Fbest(1,1,j)=Objective_function(G(1,1,j),G(1,2,j),T_dmd,W_dmd,Prev_SOC)
; 
temp = sim(net,[G(1,2,j) G(1,1,j) DOC]'); 
Fbest(1,1,j)=temp(1); 
%sim('PSO_Code_Lookupsim_6',[0,0.001]) 
%Fbest(1,1,j)=temp_6; 
  
 %For each particle comparing the objective function value for its 
entire 
 %history and finding the particles best and then defining it 
accordingly 
 %so that it can be used in main optimization equations 
  for i=1:N; 
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      %[C,I]=min(F(i,1,:)); %%CONSTRAINED PROBLEM CHANGES HERE 
%**********************************************************************
**** 
%Constrained part modification for Feasibility Starts 
%**********************************************************************
**** 
    [Fb_p_sort,sort_p_index]=sort(F(i,1,:)); 
    Feas_p=0; 
    i_unconst_p=1; 
    while Feas_p==0 andand i_unconst_p<=j 
       
Feas_p=Constraint_test(x(i,1,sort_p_index(i_unconst_p)),x(i,2,sort_p_in
dex(i_unconst_p)), DOC,net); 
       i_unconst_p=i_unconst_p+1; 
    end 
     
    if i_unconst_p==j+1 || Feas_p==0 
        pbest(i,:,j)=pbest(i,:,j-1); 
    else 
        %C=Objective_function(pbest(i,1,j-1),pbest(i,2,j-
1),T_dmd,W_dmd,Prev_SOC); 
        C=F(i,1,sort_p_index(i_unconst_p-1)); 
        I=sort_p_index(i_unconst_p-1);       
        if F(i,1,j)<=C andand i_unconst_p-1==1 
            pbest(i,:,j)=x(i,:,I);   
        else 
            pbest(i,:,j)=x(i,:,I); 
        end 
       end 
  end 
%**********************************************************************
**** 
%Constrained part modification for Feasibility ends 
%**********************************************************************
**** 
%**********************************************************************
**** 
%Stopping Criterion Starting 
%**********************************************************************
****       
  l=1; 
  repeat=1; 
  while repeat ==1 
      if j-l>0 
          if abs(Fbest(:,:,j)-Fbest(:,:,j-l))<=epslon 
              if l<50 
                  l=l+1; 
                  repeat=1; 
              else 
                   Feed=gbest(:,1,j); 
                   Spd=gbest(:,2,j); 
                   %DOC=gbest(:,3,j); 
                   ending=1; 
                   repeat=0; 
                   break 
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              end 
          else 
              repeat=0; 
          end 
      else 
          repeat=0; 
      end 
  end 
   
  if ending==1 
      break 
  end 
  
%**********************************************************************
**** 
%Stopping Criterion Ending 
%**********************************************************************
****        
                      
flag=0; 
correct(j)=0; 
for i=1:N 
    if pbest(i,:,j)==gbest(:,:,j) 
        correct(j)=1; 
        flag=1; 
        break 
    end 
end 
  
         
%Calculating the Velocities for the next iteration using the main PSO 
%Equation 
V(:,:,j+1)=W(j)*V(:,:,j)+c1*rand*(pbest(:,:,j)-
x(:,:,j))+c2*rand*(G(:,:,j)-x(:,:,j)); 
  
%Calculating the next positions of the particle corresponding to th 
above 
%newly found velocities. 
  
x(:,:,j+1)=x(:,:,j)+V(:,:,j+1); 
j=j+1; 
  
end 
Feed(1)=gbest(:,1,j-1) 
spd(1)=gbest(:,2,j-1) 
%DOC(1)=gbest(:,3,j-1) 
temp=sim(net,[gbest(:,2,j-1) gbest(:,1,j-1) DOC]'); 
Force(1)=temp(2); 
Opt_values=min(Fbest(1,1,j-1)) 
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C.5 Code for plotting results of two dimensional PSO study 

  
for i=1:size(Fbest,3) 
    Surface_rough(i)=Fbest(:,:,i); 
    speed_plot(i)=gbest(1,2,i); 
    Feed_plot(i)=gbest(1,1,i); 
   % DOC_plot(i)=gbest(1,3,i); 
end 
  
  
j=10; 
Figure(1) 
scatter(x(:,2,j),x(:,1,j),500,'b','.') 
axis([104 305 0.127 0.5588]) 
grid on 
xlabel('speed') 
ylabel('Feed') 
  
  
Figure(2) 
plot(Surface_rough) 
grid on 
xlabel('Trials') 
ylabel('Surface Roughness') 
  
Figure(3) 
plot(speed_plot,Surface_rough) 
grid on 
xlabel('Speed') 
ylabel('Surface Roughness') 
  
Figure(4) 
plot(Feed_plot,Surface_rough) 
grid on 
xlabel('Feed') 
ylabel('Surface Roughness') 
  
% Figure(5) 
% plot(DOC_plot,Surface_rough) 
% grid on 
% xlabel('Depth of Cut') 
% ylabel('Surface Roughness') 
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